The skin lesion erythema migrans (EM) is an initial sign of the Ixodes tick-transmitted Borreliella spirochetal infection known as Lyme disease. T cells and innate immune cells have previously been shown to predominate the EM lesion and promote the reaction. Despite the established importance of B cells and antibodies in preventing infection, the role of B cells in the skin immune response to Borreliella is unknown.
View Article and Find Full Text PDFHuman babesiosis is an emerging tick-borne disease caused by the intraerythrocytic protozoan Babesia microti. Its geographic distribution is more limited than that of Lyme disease, despite sharing the same tick vector and reservoir hosts. The geographic range of babesiosis is expanding, but knowledge of its range is incomplete and relies exclusively on reports of human cases.
View Article and Find Full Text PDFPrevious studies in rodents and people have demonstrated that repeated tick exposure is associated with reduced Borrelia burgdorferi transmission but the mechanism of prevention remains unclear. We examined the acute histopathologic reactions to initial and repeated Ixodes scapularis bites in BALB/c mice and in people. Skin biopsies of BALB/c mice infested for the first time by I.
View Article and Find Full Text PDFWe used multiparameter flow cytometry to characterize leukocyte immunophenotypes and cytokines in skin and peripheral blood of patients with erythema migrans (EM). Dermal leukocytes and cytokines were assessed in fluids aspirated from epidermal suction blisters raised over EM lesions and skin of uninfected controls. Compared with corresponding peripheral blood, EM infiltrates were enriched for T cells, monocytes/macrophages, and dendritic cells (DCs), contained lower proportions of neutrophils, and were virtually devoid of B cells.
View Article and Find Full Text PDF