Publications by authors named "Kenneth Pearce"

Chimeric antigen receptor T cells (CAR T cells) with T stem (T) cell-like phenotypic characteristics promote sustained antitumor effects. We performed an unbiased and automated high-throughput screen of a kinase-focused compound set to identify kinase inhibitors (KIs) that preserve human T cell-like CAR T cells. We identified three KIs, UNC10225387B, UNC10225263A and UNC10112761A, that combined in vitro increased the frequency of CD45RACCR7TCF1 T cell-like CAR T cells from both healthy donors and patients with cancer.

View Article and Find Full Text PDF

Non-structural protein 2 (nsP2), which plays an essential role in replication of CHIKV, contains a protease, helicase, and methyltransferase-like domain. We executed a simple a screen using malachite green to detect compounds that decreased ATP hydrolysis and tested a library of diverse compounds to find inhibitors of CHIKV nsP2 helicase.

View Article and Find Full Text PDF

RA-0003022 () was identified as a high-quality covalent chemical probe for nsP2 cysteine protease (nsP2pro). Isoxazole covalently captured the active site C478 and inactivated the enzyme with a / ratio of 6000 Ms. A negative control analog RA-0025453 () retained the covalent warhead but demonstrated >100-fold decrease in enzyme inhibition.

View Article and Find Full Text PDF

There are two major problems in the field of antimicrobial chemotherapy-antibiotic resistance and antibiotic tolerance. In the case of antibiotic tolerance, antibiotics fail to kill the bacteria as their phenotypic state affords them protection from the bactericidal activity of the antibiotic. Antibiotic tolerance can affect an entire bacterial population, or a subset of cells known as persister cells.

View Article and Find Full Text PDF

Osteoarthritis (OA) is the most common form of arthritis and a leading cause of pain and disability in adults. A central feature is progressive cartilage degradation and matrix fragment formation driven by the excessive production of matrix metalloproteinases (MMPs), such as MMP-13, by articular chondrocytes. Inflammatory factors, including interleukin 6 (IL-6), are secreted into the joint by synovial fibroblasts, and can contribute to pain and inflammation.

View Article and Find Full Text PDF

RNF168 orchestrates a ubiquitin-dependent DNA damage response to regulate the recruitment of repair factors, such as 53BP1 to DNA double-strand breaks (DSBs). In addition to its canonical functions in DSB signaling, RNF168 may facilitate DNA replication fork progression. However, the precise role of RNF168 in DNA replication remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Chikungunya virus (CHIKV) is a mosquito-borne virus causing major outbreaks, with no FDA-approved treatments available.
  • Researchers optimized a screening assay for CHIKV's essential protein nsP2 and identified 153 potential drug candidates, including RA-0002034.
  • RA-0002034 effectively inhibits CHIKV nsP2 activity and viral replication, making it a promising compound for future therapeutic development against CHIKV and similar viruses.
View Article and Find Full Text PDF

A promising drug target, SETDB1, is a dual Kme reader and methyltransferase, which has been implicated in cancer and neurodegenerative disease progression. To help understand the role of the triple Tudor domain (3TD) of SETDB1, its Kme reader, we first identified a low micromolar small molecule ligand, UNC6535, which occupies simultaneously both the TD2 and TD3 reader binding sites. Further optimization led to the discovery of UNC10013, the first covalent 3TD ligand targeting Cys385 of SETDB1.

View Article and Find Full Text PDF

Telomeres are a protective cap that prevents chromosome ends from being recognized as double-stranded breaks. In somatic cells, telomeres shorten with each cell division due to the end replication problem, which eventually leads to senescence, a checkpoint proposed to prevent uncontrolled cell growth. Tumor cells avoid telomere shortening by activating one of two telomere maintenance mechanisms (TMMs): telomerase reactivation or alternative lengthening of telomeres (ALT).

View Article and Find Full Text PDF

Despite their widespread impact on human health, there are no approved drugs for combating alphavirus infections. The heterocyclic β-aminomethyl vinyl sulfone RA-0002034 () is a potent irreversible covalent inhibitor of the alphavirus nsP2 cysteine protease with broad-spectrum antiviral activity. Analogs of that varied each of the three regions of the molecule were synthesized to establish structure-activity relationships for the inhibition of (CHIKV) nsP2 protease and viral replication.

View Article and Find Full Text PDF

Chemical probes are an indispensable tool for translating biological discoveries into new therapies, though are increasingly difficult to identify since novel therapeutic targets are often hard-to-drug proteins. We introduce FRASE-based hit-finding robot (FRASE-bot), to expedite drug discovery for unconventional therapeutic targets. FRASE-bot mines available 3D structures of ligand-protein complexes to create a database of FRAgments in Structural Environments (FRASE).

View Article and Find Full Text PDF

Despite their widespread impact on human health there are no approved drugs for combating alphavirus infections. The heterocyclic β-aminomethyl vinyl sulfone RA-0002034 () is a potent irreversible covalent inhibitor of the alphavirus nsP2 cysteine protease with broad spectrum antiviral activity. Analogs of that varied each of three regions of the molecule were synthesized to establish structure-activity relationships for inhibition of (CHIKV) nsP2 protease and viral replication.

View Article and Find Full Text PDF

Unlabelled: Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV non-structural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign.

View Article and Find Full Text PDF
Article Synopsis
  • RNA sequencing and genetic data point to SYK and FCER1G as potential targets for Alzheimer's disease therapy.
  • SYK activates in response to FCER1G interaction, which is linked to worsening AD pathology, leading to the hypothesis that disrupting this interaction could be beneficial.
  • Researchers developed assays to identify small molecules that disrupt the SYK and FCER1G interaction, discovering two chemotypes that inhibit this binding, though they are not selective enough for practical use.
View Article and Find Full Text PDF

Tricyclic tetrahydroquinolines (THQs) have been repeatedly reported as hits across a diverse range of high-throughput screening (HTS) campaigns. The activities of these compounds, however, are likely due to reactive byproducts that interfere with the assay. As a lesser studied class of pan-assay interference compounds, the mechanism by which fused THQs react with protein targets remains largely unknown.

View Article and Find Full Text PDF

Proteomic studies have identified moesin (MSN), a protein containing a four-point-one, ezrin, radixin, moesin (FERM) domain, and the receptor CD44 as hub proteins found within a coexpression module strongly linked to Alzheimer's disease (AD) traits and microglia. These proteins are more abundant in Alzheimer's patient brains, and their levels are positively correlated with cognitive decline, amyloid plaque deposition, and neurofibrillary tangle burden. The MSN FERM domain interacts with the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP) and the cytoplasmic tail of CD44.

View Article and Find Full Text PDF

Methyl-lysine reader p53 binding protein 1 (53BP1) is a central mediator of DNA break repair and is associated with various human diseases, including cancer. Thus, high-quality 53BP1 chemical probes can aid in further understanding the role of 53BP1 in genome repair pathways. Herein, we utilized focused DNA-encoded library screening to identify the novel hit compound UNC8531, which binds the 53BP1 tandem Tudor domain (TTD) with an IC of 0.

View Article and Find Full Text PDF

Chemical probes are an indispensable tool for translating biological discoveries into new therapies, though are increasingly difficult to identify. Novel therapeutic targets are often hard-to-drug proteins, such as messengers or transcription factors. Computational strategies arise as a promising solution to expedite drug discovery for unconventional therapeutic targets.

View Article and Find Full Text PDF

Increased expression and hyperactivation of the methyltransferase SET domain bifurcated 1 (SETDB1) are commonly observed in cancer and central nervous system disorders. However, there are currently no reported SETDB1-specific methyltransferase inhibitors in the literature, suggesting that this is a challenging target. Here, we disclose that the previously reported small-molecule ligand for SETDB1's triple tudor domain, (,)-59, is unexpectedly able to increase SETDB1 methyltransferase activity both and in cells.

View Article and Find Full Text PDF

RNA sequencing and genetic data support spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) as putative targets to be modulated for Alzheimer's disease (AD) therapy. FCER1G is a component of Fc receptor complexes that contain an immunoreceptor tyrosine-based activation motif (ITAM). SYK interacts with the Fc receptor by binding to doubly phosphorylated ITAM (p-ITAM) via its two tandem SH2 domains (SYK-tSH2).

View Article and Find Full Text PDF

Peptides have historically been underutilized for covalent inhibitor discovery, despite their unique abilities to interact with protein surfaces and interfaces. This is in part due to a lack of methods for screening and identifying covalent peptide ligands. Here, we report a method to identify covalent cyclic peptide inhibitors in mRNA display.

View Article and Find Full Text PDF

Recent genome-wide association studies have revealed genetic risk factors for Alzheimer's disease (AD) that are exclusively expressed in microglia within the brain. A proteomics approach identified moesin (MSN), a FERM (four-point-one ezrin radixin moesin) domain protein, and the receptor CD44 as hub proteins found within a co-expression module strongly linked to AD clinical and pathological traits as well as microglia. The FERM domain of MSN interacts with the phospholipid PIP and the cytoplasmic tails of receptors such as CD44.

View Article and Find Full Text PDF

Increased expression and hyperactivation of the methyltransferase SETDB1 are commonly observed in cancer and central nervous system disorders. However, there are currently no reported SETDB1-specific methyltransferase inhibitors in the literature, suggesting this is a challenging target. Here, we disclose that the previously reported small-molecule ligand for SETDB1's Triple Tudor Domain, ( )-59, is unexpectedly able to increase SETDB1 methyltransferase activity both and in cells.

View Article and Find Full Text PDF