Publications by authors named "Kenneth P Mitton"

Mutations in PRPH2 are a relatively common cause of sight-robbing inherited retinal degenerations (IRDs). Peripherin-2 (PRPH2) is a photoreceptor-specific tetraspanin protein that structures the disk rim membranes of rod and cone outer segment (OS) organelles, and is required for OS morphogenesis. PRPH2 is noteworthy for its broad spectrum of disease phenotypes; both inter- and intra-familial heterogeneity have been widely observed and this variability in disease expression and penetrance confounds efforts to understand genotype-phenotype correlations and pathophysiology.

View Article and Find Full Text PDF

Familial Exudative Vitreoretinopathy (FEVR), Norrie disease, and persistent fetal vascular syndrome (PFVS) are extremely rare retinopathies that are clinically distinct but are unified by abnormal retinal endothelial cell function, and subsequent irregular retinal vascular development and/or aberrant inner blood-retinal-barrier (iBRB) function. The early angiogenesis of the retina and its iBRB is a delicate process that is mediated by the canonical Norrin Wnt-signaling pathway in retinal endothelial cells. Pathogenic variants in genes that play key roles within this pathway, such as and have been associated with the incidence of these retinal diseases.

View Article and Find Full Text PDF

While Inherited Retinal Diseases (IRDs) are typically considered rare diseases, Familial Exudative Vitreo-Retinopathy (FEVR) and Norrie Disease (ND) are more rare than retinitis pigmentosa. We wanted to determine if multigenic protein-altering variants are common in FEVR subjects within a set of FEVR-related genes. The potential occurrence of protein-altering variants in two different genes has been documented in a very small percentage of patients, but potential multigenic contributions to FEVR remain unclear.

View Article and Find Full Text PDF

Purpose: There are reports that a b-isoform of vascular endothelial growth factor-A 165 (VEGFAb) is predominant in normal human vitreous, switching to the a-isoform (VEGFAa) in the vitreous of some diseased eyes. Although these isoforms appear to have a different ability to activate the VEGF receptor 2 (VEGFR2) in various endothelial cells, the nature of their ability to activate intracellular signaling pathways is not fully characterized, especially in retinal endothelial cells. We determined their activation potential for two key intracellular signaling pathways (MAPK, AKT) over complete dose-response curves and compared potential effects on the expression of several VEGFA target genes in primary human retinal microvascular endothelial cells (HRMECs).

View Article and Find Full Text PDF

The data presented in this article are related to the research paper entitled "Norrin treatment improves ganglion cell survival in an oxygen-induced model of retinal ischemia" (Dailey et al., 2017) [1] This article describes treatment with the human Norrin protein, an atypical Wnt-protein, to improve the survival of retinal ganglion cells in a murine model of Oxygen-Induced Retinopathy (OIR). That study utilized Optical coherence tomography (OCT) to visualize retinal layers at high resolution , and to quantify changes to nerve fiber layer thickness.

View Article and Find Full Text PDF

Treatment of a mouse model of oxygen-induced retinopathy (OIR) with recombinant human Norrin (Norrie Disease Protein, gene: NDP) accelerates regrowth of the microvasculature into central ischemic regions of the neural retina, which are generated after treatment with 75% oxygen. While this reduces the average duration and severity of ischemia overall, we do not know if this accelerated recovery of the microvasculature results in any significant survival of retinal ganglion cells (RGCs). The purpose of this study was to investigate ganglion cell survival with and without the intravitreal injection of Norrin in the murine model of oxygen induced retinopathy (OIR), using two strains of mice: C57BL/6J and Thy1-YFP mice.

View Article and Find Full Text PDF

Purpose: The histone-deacetylase inhibitor activity of valproic acid (VPA) was discovered after VPA's adoption as an anticonvulsant. This generated speculation for VPA's potential to increase the expression of neuroprotective genes. Clinical trials for retinitis pigmentosa (RP) are currently active, testing VPA's potential to reduce photoreceptor loss; however, we lack information regarding the effects of VPA on available mammalian models of retinal degeneration, nor do we know if retinal gene expression is perturbed by VPA in a predictable way.

View Article and Find Full Text PDF

Purpose: Inhibition of VEGF is widely used in patients to control neovascularization and decrease vascular permeability. To date, the effect of VEGF inhibition has not been evaluated in the developing retina such as that seen in premature infants. The goal of this study was to address the effect of anti-VEGF treatment on retinal development of a mouse model of retinopathy.

View Article and Find Full Text PDF

Neural retina leucine zipper (NRL) is an essential transcription factor for cell fate specification and functional maintenance of rod photoreceptors in the mammalian retina. In the Nrl(-/-) mouse retina, photoreceptor precursors fail to produce rods and generate functional cone photoreceptors that predominantly express S-opsin. Previous global expression analysis using microarrays revealed dramatically reduced expression of myocyte enhancer factor Mef2c in the adult Nrl(-/-) retina.

View Article and Find Full Text PDF

Purpose: During retinal development, post-mitotic neural progenitor cells must activate thousands of genes to complete synaptogenesis and terminal maturation. While many of these genes are known, others remain beyond the sensitivity of expression microarray analysis. Some of these elusive gene activation events can be detected by mapping changes in RNA polymerase-II (Pol-II) association around transcription start sites.

View Article and Find Full Text PDF

Purpose: To characterize gene expression patterns in guinea pig ocular tissues and identify orthologs of human genes from NEIBank expressed sequence tags.

Methods: RNA was extracted from dissected eye tissues of 2.5-month-old guinea pigs to make three unamplified and unnormalized cDNA libraries in the pCMVSport-6 vector for the lens, retina, and eye minus lens and retina.

View Article and Find Full Text PDF

Background: FIZ1 (Flt-3 Interacting Zinc-finger) is a broadly expressed protein of unknown function. We reported previously that in the mammalian retina, FIZ1 interacts with NRL (Neural-Retina Leucine-zipper), an essential transcriptional activator of rod photoreceptor-specific genes. The concentration of FIZ1 in the retina increases during photoreceptor terminal maturation, when two key transcription factors NRL and CRX (Cone-Rod Homeobox) become detectable on the promoters of photoreceptor-specific genes (i.

View Article and Find Full Text PDF

FIZ1 (Flt-3 Interacting Zinc-finger) interacts and co-purifies with the rod-specific transcription factor NRL (Neural Retina Leucine zipper). We hypothesize that FIZ1 is part of an interface between cell-specific factors, like NRL, and more ubiquitous regulatory networks that vary the absolute expression levels of some rod-specific genes (i.e.

View Article and Find Full Text PDF

The basic motif-leucine zipper (bZIP) transcription factor NRL controls the expression of rhodopsin and other phototransduction genes and is a key mediator of photoreceptor differentiation. To delineate the molecular mechanisms underlying transcriptional initiation of rod-specific genes, we characterized different regions of the NRL protein using yeast-based autoactivation assays. We identified 35 amino acid residues in the proline- and serine-rich N-terminal region (called minimal transactivation domain, MTD), which, when combined with LexA or Gal4 DNA binding domains, exhibited activation of target promoters.

View Article and Find Full Text PDF

NR2E3, a photoreceptor-specific orphan nuclear receptor, is believed to play a pivotal role in the differentiation of photoreceptors. Mutations in the human NR2E3 gene and its mouse ortholog are associated with enhanced S-cones and retinal degeneration. In order to gain insights into the NR2E3 function, we performed temporal and spatial expression analysis, yeast two-hybrid screening, promoter activity assays and co-immunoprecipitation studies.

View Article and Find Full Text PDF

NRL (neural retina leucine zipper) is a basic motif leucine zipper transcription factor of the Maf-subfamily. Multiple phosphorylated isoforms of NRL are detected specifically in rod photoreceptors. NRL regulates the expression of several rod-specific genes, including rhodopsin and cGMP phosphodiesterase beta-subunit, in synergy with other transcription factors (e.

View Article and Find Full Text PDF