Bisphenol A (BPA) is a commonly used endocrine-disrupting chemical found in high levels in wastewater worldwide. Aerobic denitrification is a promising alternative to conventional nitrogen removal processes. However, the effects of BPA on this novel nitrogen removal process have rarely been reported.
View Article and Find Full Text PDFMarine fisheries resources are under increasing threat, necessitating the development of new effective monitoring and management strategies. Environmental DNA (eDNA) and RNA (eRNA) metabarcoding has emerged as a non-invasive and sensitive alternative method for monitoring fish biodiversity and fisheries resources and assessing the fisheries impact of anthropogenic activities. Here, we summarize crucial technical details about eDNA metabarcoding for marine fish monitoring and provide meta-analytical trends in primer selection and sample size, assessment standards, fish and fisheries databases, reference fish genomic databases, and other relevant metrics.
View Article and Find Full Text PDFTo defuse risks of antibiotic residues in effluent to achieve safe wastewater reuse, direct hydrolysis of the functional group responsible for the antibacterial activity, such as the of β-lactam ring in β-lactam antibiotics, has been recognized as an efficient and cost-effective strategy. However, the instability of natural hydrolases limits their use in treating antibiotic-containing wastewater. Herein, inspired by the active site of natural hydrolase, a Ce-based nanohydrolase was created for rapid hydrolysis of β-lactam antibiotics.
View Article and Find Full Text PDFInput of pollutants to estuaries is one of the major threats to marine biodiversity and fishery resources, and pharmaceuticals are one of the most important contaminants of emerging concern in aquatic ecosystems. To synthesize pharmaceutical pollution levels in estuaries over the past 20 years from a global perspective, this review identified 3229 individual environmental occurrence data for 239 pharmaceuticals across 91 global estuaries distributed in 26 countries. The highest cumulative weighted average concentration level (WACL) of all detected pharmaceuticals in estuarine water was observed in Africa (145,461.
View Article and Find Full Text PDFThe outbreak of the COVID-19 pandemic led to a sharp increase in disposable surgical mask usage. Discarded masks can release microplastic and cause environmental pollution. Since masks have become a daily necessity for protection against virus infections, it is necessary to review the usage and disposal of masks during the pandemic for future management.
View Article and Find Full Text PDFThe investigation of pharmaceuticals as emerging contaminants in marine biota has been insufficient. In this study, we examined the presence of 51 pharmaceuticals in edible oysters along the coasts of the East and South China Seas. Only nine pharmaceuticals were detected.
View Article and Find Full Text PDFThe persistence of extracellular antibiotic resistance genes (ARGs) in aquatic environments has attracted increasing attention due to their potential threat to public health and the environment. However, the fate of extracellular ARGs in receiving water remains largely unknown. This study investigated the influence of hematite nanoparticles, a widespread natural mineral, on the photodegradation of extracellular ARGs in river water.
View Article and Find Full Text PDFAmphibians are sensitive biomonitors of environmental pollutants but reports regarding per- and polyfluoroalkyl substances (PFAS), a class of synthetic organofluorine substances, are limited. In this study, samples of water and Chinese toads () were collected in Chaohu Lake, China. Tissue-specific bioaccumulation characteristics of 39 PFAS, including 19 perfluoroalkyl acids (PFAAs), 8 emerging PFAS, and 12 PFAA precursors, were investigated, and the levels of some biochemical indicators were determined.
View Article and Find Full Text PDFDue to their prevalence in urban contaminated water, the driving factors of organophosphate esters (OPEs) need to be well examined, and their related ecological impacts should include that of their transformation products (TPs). Additionally, a robust framework needs to be developed to integrate multiple variables related to ecological impacts for improving the ecological health assessment. Therefore, OPEs and TPs in urban stormwater and wastewater in Hong Kong were analyzed to fill these gaps.
View Article and Find Full Text PDFHalogenated flame retardants (HFRs) are a large class of chemical additives intended to meet flammability safety requirements, and at present, they are ubiquitous in the environment. Herein, we conducted the target analysis and suspect screening of legacy and novel HFRs and their metabolites in the blubber of finless porpoises (; = 70) and Indo-Pacific humpback dolphins (; = 35) stranded in Hong Kong, a coastal city in the South China Sea, between 2013 and 2020. The average concentrations of total target HFRs (ΣHFRs) were 6.
View Article and Find Full Text PDFGrowing application of zinc oxide nanoparticles (ZnO-NPs) in global market has led to the concern over their potential environmental impacts. Filter feeders like mussels are prone to nanoparticles due to their superior filter-feeding ability. Temperature and salinity of coastal and estuarine seawaters often vary seasonally and spatially, and their changes may jointly influence physicochemical properties of ZnO-NPs and thus their toxicity.
View Article and Find Full Text PDFBiochar-derived dissolved black carbon (DBC) molecules are dependent on the BC formation temperature and affect the fate of emerging contaminants in waters, such as polyvinyl chloride microplastic (MP). However, the temperature-dependent evolution and MP-interaction of DBC molecules remain unclear. Herein, we propose a novel DBC-MP interaction mechanism by systematically interpreting heterogeneous correlations, sequential responses, and synergistic relationships of thousands of molecules and their linking functional groups.
View Article and Find Full Text PDFThere is growing contamination of copper (Cu) in the marine environment, particularly after the ban of organotin compounds and the increase of the use of Cu-based antifouling paints. Although there are increasing research interests in temperature-dependent chemical toxicity to aquatic organisms, most existing studies focused on acute impacts of chemicals at high concentrations. This study aimed to investigate the interacting effect of temperature and copper exposure at environmentally relevant concentrations on survival and development in the marine copepod Tigriopus japonicus with a partial life-cycle toxicity test.
View Article and Find Full Text PDFMicroplastics (MPs) and nanoplastics (NPs) are widely detected in food and the human environment. More studies have begun to pay attention to the influence of MPs and NPs on genetics; in particular, exposure of paternal generation to MPs and NPs on epigenetic inheritance and the offspring of animal models have attracted considerable interest. In this Viewpoint, we mainly discuss the suggestion that reproductive genetic changes in the male parent have the potential to be transferred to the offspring and illustrate how MPs and NPs in the father tissues are distributed in later generations.
View Article and Find Full Text PDFEmerging contaminants such as nanoplastics and nanoparticles likely experience similar environmental behaviours, fate and effects but our knowledge of their combined toxicity is scanty. This study, therefore, investigated the joint toxicity of polystyrene nanoplastics (PNPs) and zinc oxide nanoparticles (ZnO-NPs) to an ecologically important rotifer Brachionus koreanus, and compared with the joint toxicity of PNPs and Zn ions (Zn-IONs from ZnSO·7HO). With increasing concentration, ZnO-NPs formed significant agglomeration with PNPs for up to 1.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized by dopaminergic neurodegeneration in nigrostriatal and cortical brain regions associated with pathogenic α-synuclein (αSyn) aggregate/oligomer accumulation. LRRK2 hyperactivity is a disease-modifying therapeutic target in PD. However, LRRK2 inhibition may be associated with peripheral effects, albeit with unclear clinical consequences.
View Article and Find Full Text PDFAtmospheric particulate matter, especially in urban and industrial environments, can act as a source of different organic pollutants that can pose significant health impacts to residents. However, the pollution status and transport mechanisms of fine particle-bound polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor environments are uncertain. This study aimed to determine the spatial distribution and morphological characteristics of fine particle-bound PAHs and analyze the factors (source contributions and backward trajectories) that influence their concentrations.
View Article and Find Full Text PDFExcessive intake of retinoic acids (RAs) and the oxidative metabolites, 4-oxo-RAs, can lead to abnormal morphological development in animals. This study investigated spatiotemporal variations of concentrations and compositions of these compounds in Hong Kong's seawater and during algal blooms. Total concentrations of the studied compounds in seawater were up to 0.
View Article and Find Full Text PDFVolatile organic compound (VOC) emissions from pyrolysis of widely used biomass are expected to increase significantly under the carbon neutrality target. However, the dynamic emissions and evolution mechanism of biomass-VOCs remain unclear, hindered by complex reactions and offline measurements. Here, we propose a novel covariant evolution mechanism to interpret the emission heterogeneities, sequential temperature responses, and evolved correlations of both VOCs and residual functional groups (RFGs) during corn straw (CS), wood pellet (WP), and semibituminous coal (SBC) pyrolysis.
View Article and Find Full Text PDF