Objectives: In an increasingly global society, there is a need to develop culturally competent doctors who can work effectively across diverse populations. International learning opportunities in undergraduate healthcare programmes show various benefits. In medical education, these occur predominantly towards the end of degree programmes as electives, with scant examples of programmes for preclinical students.
View Article and Find Full Text PDFNewcastle University UK operates an international campus, NUMed, in Malaysia. NUMed delivers the same medical degree programme as in the UK, within a different cultural context. In this paper, medical education faculty and NUMed graduates with experience working in both the UK and Malaysia provide insights into cross-cultural diversity in approaches to learning.
View Article and Find Full Text PDFThe rate of ribosome biogenesis, which is downregulated in terminally differentiated cells and upregulated in most cancers, regulates the growth rate and is linked to the cell's proliferative potential. The U3 box C/D small nucleolar RNP (snoRNP) is an integral component of the small subunit (SSU) processome and is essential for 18S rRNA processing. We show that U3 snoRNP assembly, and therefore U3 snoRNA accumulation, is regulated through the U3-specific protein hU3-55K.
View Article and Find Full Text PDFThe box C/D small nucleolar RNPs (snoRNPs) are essential for the processing and modification of rRNA. TIP48 and TIP49 are two related AAA(+) proteins that are essential for the formation of box C/D snoRNPs. These proteins are key components of the pre-snoRNP complexes, but their exact role in box C/D snoRNP biogenesis is largely uncharacterized.
View Article and Find Full Text PDFThe box C/D small nucleolar RNPs (snoRNPs) are essential for the processing and modification of rRNA. The core box C/D proteins are restructured during human U3 box C/D snoRNP biogenesis; however, the molecular basis of this is unclear. Here we show that the U8 snoRNP is also restructured, suggesting that this may occur with all box C/D snoRNPs.
View Article and Find Full Text PDFVceR, a member of the TetR family of transcriptional regulators, is a repressor of the vceCAB operon, which encodes a multidrug efflux pump in Vibrio cholerae. VceR binds to a 28 bp inverted-repeat within the vceR-vceC intergenic region and is dissociated from this site with CCCP, a pump substrate. The rate of the CCCP-induced conformational change in VceR was determined by stopped-flow fluorescence spectroscopy, revealing a highly co-operative process that occurs with a Hill coefficient of approximately 4.
View Article and Find Full Text PDFMultidrug resistance in Gram-negative bacteria arises in part from the activities of tripartite drug efflux pumps. In the pathogen Vibrio cholerae, one such pump comprises the inner membrane proton antiporter VceB, the periplasmic adaptor VceA, and the outer membrane channel VceC. Here, we report the crystal structure of VceC at 1.
View Article and Find Full Text PDFThe active efflux of cytotoxic drugs mediated by multidrug transporters is the basis of multidrug resistance in prokaryotic and eukaryotic cells. Individual multidrug transporters can be extremely versatile, often exhibiting a staggering range of substrate specificity that can negate the effects of clinically relevant therapies. The effective treatment of bacterial, fungal and protozoan infections, along with certain cancer treatments, has been compromised by the presence of multidrug transporters.
View Article and Find Full Text PDFResistance to therapeutic drugs encompasses a diverse range of biological systems, which all have a human impact. From the relative simplicity of bacterial cells, fungi and protozoa to the complexity of human cancer cells, resistance has become problematic. Stated in its simplest terms, drug resistance decreases the chance of providing successful treatment against a plethora of diseases.
View Article and Find Full Text PDFOur understanding of the exact mechanisms used by the transmembrane protein pumps that confer cellular resistance to cytotoxic drugs has improved enormously with the recent determination of the structures of three Escherichia coli transporters, two belonging to the ATP-binding cassette (ABC) superfamily and one to the resistance-nodulation-cell division (RND) family. Although these studies do not provide an insight into how drug pumps can recognize several structurally unrelated drugs, important advances have been also made in this area. Information on the molecular basis of multidrug recognition has been provided by determining the structure of transcriptional regulators that can bind, often structurally unrelated, cytotoxic drugs and control the expression of drug pumps.
View Article and Find Full Text PDFMicroorganisms and viruses have developed numerous resistance mechanisms that enable them to evade the effect of antimicrobials and antivirals. As a result, many have become resistant to almost every available means of treatment. This problem, although not new, is becoming increasingly acute and it is now clear that a fundamental understanding of the mechanisms that microbes and viruses deploy in the development of resistance is essential if we are to gain new insights into ways to combat this problem.
View Article and Find Full Text PDF