Publications by authors named "Kenneth M Liechti"

Pressure-sensitive-adhesives (PSAs) are ubiquitous in electronic, automobile, packaging, and biomedical applications due to their ability to stick to numerous surfaces without undergoing chemical reactions. Although these materials date back to the 1850s with the development of surgical tapes based on natural rubber, their resistance to shear loads remains challenging to predict from molecular design. This work investigates the role of crosslink density on the shear resistance of model PSAs based on poly(2-ethylhexyl acrylate--acrylic acid) physically crosslinked with aluminum acetylacetonate.

View Article and Find Full Text PDF

Emerging nanoscale applications in energy, electronics, optics, and medicine can exhibit enhanced performance by incorporating nanoshaped structures (nanoshape structures here are defined as shapes enabled by sharp corners with radius of curvature < 5 nm). Nanoshaped fabrication at high-throughput is well beyond the capabilities of advanced optical lithography. Although the highest-resolution e-beams and large-area e-beams have a resolution limit of 5 and 18 nm half-pitch lines or 20 nm half-pitch holes, respectively, their low throughput necessitates finding other fabrication techniques.

View Article and Find Full Text PDF

Monolayer graphene is commonly grown on Cu substrates due to the self-limiting nature of graphene synthesis by chemical vapor deposition (CVD). Consequently, the growth of multilayer graphene by CVD has proven to be relatively difficult. This study demonstrates that the number of layers in graphene synthesized on a copper substrate can be precisely set by controlling the partial pressure of hydrogen gas used in the CVD process.

View Article and Find Full Text PDF

The adhesion interactions of two-dimensional (2D) materials are of importance in developing flexible electronic devices due to relatively large surface forces. Here, we investigated the adhesion properties of large-area monolayer MoS grown on silicon oxide by using chemical vapor deposition. Fracture mechanics concepts using double cantilever beam configuration were used to characterize the adhesion interaction between MoS and silicon oxide.

View Article and Find Full Text PDF

We report the first direct dry transfer of a single-crystalline thin film grown by molecular beam epitaxy. A double cantilever beam fracture technique was used to transfer epitaxial bismuth thin films grown on silicon (111) to silicon strips coated with epoxy. The transferred bismuth films retained electrical, optical, and structural properties comparable to the as-grown epitaxial films.

View Article and Find Full Text PDF

Roll-to-roll manufacturing of graphene is attractive because of its compatibility with flexible substrates and its promise of high-speed production. Several prototype roll-to-roll systems have been demonstrated, which produce large-scale graphene on polymer films for transparent conducting film applications.1-4 In spite of such progress, the quality of graphene may be influenced by the tensile forces that are applied during roll-to-roll transfer.

View Article and Find Full Text PDF

A very fast, dry transfer process based on mechanical delamination successfully effected the transfer of large-area, CVD grown graphene on copper foil to silicon. This has been achieved by bonding silicon backing layers to both sides of the graphene-coated copper foil with epoxy and applying a suitably high separation rate to the backing layers. At the highest separation rate considered (254.

View Article and Find Full Text PDF

The wet-transfer of graphene grown by chemical vapor deposition (CVD) has been the standard procedure for transferring graphene to any substrate. However, the nature of the interactions between large area graphene and target substrates is unknown. Here, we report on measurements of the traction-separation relations, which represent the strength and range of adhesive interactions, and the adhesion energy between wet-transferred, CVD grown graphene and the native oxide surface of silicon substrates.

View Article and Find Full Text PDF

Direct measurements of the normal force interactions between a mica-tungsten contact pair at various humidity levels reveal the presence of repulsive forces at about 0.5 nm before intimate contact. Such repulsive interactions begin to appear above 20% RH and are fully developed in the range of 38-45% RH.

View Article and Find Full Text PDF

Scale dependence in friction is studied in the present paper using the newly developed mesoscale friction tester (MFT). A transition in frictional shear strength from several hundreds of MPa to several tens of MPa was observed over a very limited range of contact radii (20-30 nm) in both ambient and dry environments. Thus, a single apparatus has been able to establish these two limits which are consistent with the values previously obtained from friction experiments using atomic force microscopy (AFM) and the surface force apparatus (SFA), respectively.

View Article and Find Full Text PDF

The JKR, DMT, Maugis models and Tabor parameter for contact under normal loading have been developed based mainly on solid-solid (van der Waals) interactions. In this case, the characteristic length scale for the adhesive forces in the Tabor parameter is the equilibrium interatomic spacing. However, for contact in humid environments, where a liquid meniscus may be present, capillary forces with a longer force range related to the Kelvin radius dominate.

View Article and Find Full Text PDF

Surface smoothness of probe tips is critical for applications, such as measuring surface tension of various liquids, oscillatory hydration forces, and interfacial shear strengths from friction experiments. In this study we establish conditions for fabricating tips with smooth surfaces by controlling the electrochemical polishing process throughout the tip evolution rather than following the current practice of producing tips by the drop-off method. Polishing is conducted under a constant voltage, with the wire immersed below the nominal air/electrolyte interface by no more than one-half of the wire diameter and stopping the etching at different current levels.

View Article and Find Full Text PDF

Illustrating direct connections between surface chemical events and mechanical and topological characteristics of self-assembled monolayers derived from octadecyltrichlorosilane (OTS) adsorption on Si(100), layers prepared in the presence and absence of moisture have been characterized. Uniform and robust self-assembled monolayers are demonstrated provided the Si(100) surface is fully hydroxylated by treatment in piranha solution and the dried surface is exposed to OTS under strict anhydrous conditions. With nanoscale resolution, the uniform mechanical properties are confirmed by interfacial force microscopy while the uniform topological properties are evident in atomic force microscopy images.

View Article and Find Full Text PDF