Background: Despite being the definitive treatment for lower extremity peripheral arterial disease, vein bypass grafts fail in half of all cases. Early repair mechanisms after implantation, governed largely by the immune environment, contribute significantly to long-term outcomes. The current study investigates the early response patterns of circulating monocytes as a determinant of graft outcome.
View Article and Find Full Text PDFObjective: Although clinical studies have identified that a single nucleotide polymorphism in the p27(kip1) gene is associated with success or failure after vein bypass grafting, the underlying mechanisms for this difference are not well defined. Using a high-throughput approach in a flow-dependent vein graft model, we explored the differences in p27(kip1)-related genes that drive the enhanced hyperplastic response under low-flow conditions.
Methods: Bilateral rabbit carotid artery interposition grafts with jugular vein were placed with a unilateral distal outflow branch ligation to create differential flow states.