Exfoliation of non-layered materials is crucial to unleash their enormous potential in wide range of applications. However, the presence of strong non-van der Waals interactions in all three dimensions makes exfoliation challenging. Boron carbide (BC), known for its high hardness, holds great potential for diverse applications.
View Article and Find Full Text PDFHeterostructures of 2D materials have provided splendid insights into fundamental phenomena and are also promising for numerous applications. However, the protocols for obtaining them remain highly specific and lack scalability. Herein, the demonstrated protocol employs surfactant-assisted exfoliation and centrifugation-based size-selection of nanosheets for synthesizing heterostructures through electrostatic self-assembly.
View Article and Find Full Text PDFLiquid exfoliation can be considered as a viable approach for the scalable production of 2D materials due to its various benefits, although the polydispersity in the obtained nanosheet size hinders their straightforward incorporation. Size-separation can help alleviate these concerns, however a correlation between nanosheet size and property needs to be established to bring about size-specific applicability. Herein, size-selected aqueous nanosheet dispersions have been obtained via centrifugation-based protocols, and their chemical activity in the spontaneous reduction of chloroplatinic acid is investigated.
View Article and Find Full Text PDFUnderstanding size-dependent properties of 2D materials is crucial for their optimized performance when incorporated through solution routes. In this work, the chemical nature of MoS as a function of nanosheet size is investigated through the spontaneous reduction of chloroauric acid. Microscopy studies suggest higher gold nanoparticle decoration density in smaller nanosheet sizes, resulting from higher extent of reduction.
View Article and Find Full Text PDFWater-dispersible two-dimensional (2D) materials are desirable for diverse applications. Aqueous dispersions make processing safer and greener and enable evaluation of these materials on biological and environmental fronts. To evaluate the effects of 2D materials with biological systems, obtaining dispersions without additives is critical and has been a challenge.
View Article and Find Full Text PDFLiquid-phase exfoliation has provided an efficient and scalable route to obtain dispersions of layered materials. Dispersions in low-boiling solvents facilitate the ease of processing; however, the challenge of obtaining them at high concentrations still prevails. Herein, the use of 2-butanone (B.
View Article and Find Full Text PDF