Introduction: Unlike white adipose tissue depots, bone marrow adipose tissue (BMAT) expands during caloric restriction (CR). Although mechanisms for BMAT expansion remain unclear, prior research suggested an intermediary role for increased circulating glucocorticoids.
Methods: In this study, we utilized a recently described mouse model () to exclusively target bone marrow adipocytes (BMAds) for elimination of the glucocorticoid receptor (GR) (i.
The brain augments glucose production during fasting, but the mechanisms are poorly understood. Here, we show that -expressing neurons in the ventromedial hypothalamic nucleus (VMN cells) prevent low blood glucose during fasting through sympathetic nervous system (SNS)-mediated augmentation of adipose tissue lipolysis and substrate release. Activating VMN neurons mobilized gluconeogenic substrates without altering glycogenolysis or gluconeogenic enzyme expression.
View Article and Find Full Text PDFObjective: Exposure of adipocytes to 'cool' temperatures often found in the periphery of the body induces expression of Stearoyl-CoA Desaturase-1 (Scd1), an enzyme that converts saturated fatty acids to monounsaturated fatty acids. The goal of this study is to further investigate the roles of Scd in adipocytes.
Method: In this study, we employed Scd1 knockout cells and mouse models, along with pharmacological Scd1 inhibition to dissect the enzyme's function in adipocyte physiology.
Exposure of adipocytes to 'cool' temperatures often found in the periphery of the body induces expression of Stearoyl-CoA Desaturase-1 (SCD1), an enzyme that converts saturated fatty acids to monounsaturated fatty acids. In this study, we employed knockout cells and mouse models, along with pharmacological SCD1 inhibition, to investigate further the roles of SCD1 in adipocytes. Our study reveals that production of monounsaturated lipids by SCD1 is necessary for fusion of autophagosomes to lysosomes and that with a SCD1-deficiency, autophagosomes accumulate.
View Article and Find Full Text PDFTo investigate roles for bone marrow adipocyte (BMAd) lipolysis in bone homeostasis, we created a BMAd-specific Cre mouse model in which we knocked out adipose triglyceride lipase (ATGL, gene). BMAd- mice have impaired BMAd lipolysis, and increased size and number of BMAds at baseline. Although energy from BMAd lipid stores is largely dispensable when mice are fed ad libitum, BMAd lipolysis is necessary to maintain myelopoiesis and bone mass under caloric restriction.
View Article and Find Full Text PDFObjective: Tamoxifen is widely used for inducible Cre-LoxP systems but has several undesirable side effects for researchers investigating metabolism or energy balance, including weight loss, lipoatrophy, and drug incorporation into lipid stores. For this reason, we sought to determine whether a doxycycline-inducible system would be more advantageous for adipocyte-specific Cre mouse models, but serendipitously discovered widespread ectopic tetracycline response element Cre (TRE-Cre) recombinase activity.
Methods: Adipocyte-specific tamoxifen- and doxycycline-inducible Cre mice were crossed to fluorescent Cre reporter mice and visualized by confocal microscopy to assess efficiency and background activity.
CRISPR/Cas9 has enabled inducible gene knockout in numerous tissues; however, its use has not been reported in brown adipose tissue (BAT). Here, we developed the brown adipocyte CRISPR (BAd-CRISPR) methodology to rapidly interrogate the function of one or multiple genes. With BAd-CRISPR, an adeno-associated virus (AAV8) expressing a single guide RNA (sgRNA) is administered directly to BAT of mice expressing Cas9 in brown adipocytes.
View Article and Find Full Text PDFMechanisms by which autosomal recessive mutations in cause familial partial lipodystrophy type 2 (FPLD2) are poorly understood. To investigate the function of lamin A/C in adipose tissue, we created mice with an adipocyte-specific loss of ( ). Although mice develop and maintain adipose tissues in early postnatal life, they show a striking and progressive loss of white and brown adipose tissues as they approach sexual maturity.
View Article and Find Full Text PDFObjective: Obesity is a key risk factor for many secondary chronic illnesses, including type 2 diabetes and cardiovascular disease. Canonical Wnt/β-catenin signaling is established as an important endogenous inhibitor of adipogenesis. This pathway is operative in mature adipocytes; however, its roles in this context remain unclear due to complexities of Wnt signaling and differences in experimental models.
View Article and Find Full Text PDFThe cell plasma membrane is a highly dynamic organelle governing a wide range of cellular activities including ion transport, secretion, cell division, growth, and development. The fundamental process involved in the addition of new membranes to pre-existing plasma membranes, however, is unclear. Here, we report, using biophysical, morphological, biochemical, and molecular dynamic simulations, the selective incorporation of proteins and lipids from the cytosol into the cell plasma membrane dictated by membrane stretch and composition.
View Article and Find Full Text PDFBariatric surgeries are integral to the management of obesity and its metabolic complications. However, these surgeries cause bone loss and increase fracture risk through poorly understood mechanisms. In a mouse model, vertical sleeve gastrectomy (VSG) caused trabecular and cortical bone loss that was independent of sex, body weight, and diet, and this loss was characterized by impaired osteoid mineralization and bone formation.
View Article and Find Full Text PDFRadiopharmaceuticals targeting cell surface expression of somatostatin receptors (SSTRs) are particularly useful in the evaluation of neuroendocrine tumors. Gallium-68 DOTA-Tyr-octreotatate (Ga-DOTATATE) primarily binds to SSTR type 2 receptors. Ga DOTATATE PET/CT is proven to have high impact on the management of neuroendocrine patients compared to traditional anatomical imaging as well as provides additional information over that of conventional nuclear medicine studies (indium-III DTPA-octreotide).
View Article and Find Full Text PDFCulturing bone marrow stromal cells on 3D silk scaffolds supports their proliferation and adipogenesis, while minimizing the activation of inflammatory pathways. Therefore, differentiation of bone marrow adipocytes in 3D culture might provide a more representative model for the study of bone marrow adipose tissue than is offered by traditional 2D cell cultures.
View Article and Find Full Text PDFA wide range of cellular activities including protein folding and cell secretion, such as neurotransmission or insulin release, are all governed by intracellular pH homeostasis, underscoring the importance of pH on critical life processes. Nano- scale pH measurements of cells and biomolecules therefore hold great promise in understanding a plethora of cellular functions, in addition to disease detection and therapy. In the current study, a novel approach using cadmium telluride quantum dots (CdTeQDs) as pH sensors, combined with fluorescent imaging, spectrofluorimetry, atomic force microscopy (AFM), and Western blot analysis, enabled the study of intracellular pH dynamics at 1 milli-pH sensitivity and 80nm pixel resolution, during insulin secretion.
View Article and Find Full Text PDFIn the past 50 years, isolated blood platelets have had restricted use in wound healing, cancer therapy, and organ and tissue transplant, to name a few. The major obstacle for its unrestricted use has been, among others, the presence of ultrahigh concentrations of growth factors and the presence of both pro-angiogenic and anti-angiogenic proteins. To overcome this problem requires the isolation and separation of the membrane bound secretory vesicles containing the different factors.
View Article and Find Full Text PDFSynaptic vesicles measuring 30-50 nm in diameter containing neurotransmitters either completely collapse at the presynaptic membrane or dock and transiently fuse at the base of specialized 15 nm cup-shaped lipoprotein structures called porosomes at the presynaptic membrane of synaptosomes to release neurotransmitters. Recent study reports the unique composition of major lipids associated with neuronal porosomes. Given that lipids greatly influence the association and functions of membrane proteins, differences in lipid composition of synaptic vesicle and the synaptosome membrane was hypothesized.
View Article and Find Full Text PDFEfficient drug delivery is critical to therapy. Using electron microscopy, X-ray, and light microscopy, we have characterized functionalized superparamagnetic iron oxide (SPIO) nanoparticles, and determined their ability for rapid entry and release of the cancer drug doxorubicin in human pancreatic cancer cells. Dextran-coated SPIO nanoparticle ferrofluid, functionalized with the red-autofluorescing doxorubicin and the green-fluorescent dye fluorescein isothiocyanate as a reporter, enables tracking the intracellular nanoparticle transport and drug release.
View Article and Find Full Text PDFDisruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2060 chemical samples on steroidogenesis via high-performance liquid chromatography followed by tandem mass spectrometry quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a 3 stage screening strategy.
View Article and Find Full Text PDFSupramolecular cup-shaped lipoprotein structures called porosomes embedded in the cell plasma membrane mediate fractional release of intravesicular contents from cells during secretion. The presence of porosomes, have been documented in many cell types including neurons, acinar cells of the exocrine pancreas, GH-secreting cells of the pituitary, and insulin-secreting pancreatic β-cells. Functional reconstitution of porosomes into artificial lipid membranes, have also been accomplished.
View Article and Find Full Text PDFCup-shaped secretory portals at the cell plasma membrane called porosomes mediate the precision release of intravesicular material from cells. Membrane-bound secretory vesicles transiently dock and fuse at the base of porosomes facing the cytosol to expel pressurized intravesicular contents from the cell during secretion. The structure, isolation, composition, and functional reconstitution of the neuronal porosome complex have greatly progressed, providing a molecular understanding of its function in health and disease.
View Article and Find Full Text PDFBackground: Trimethoprim-sulfamethoxazole (TMP-SMX) is an antimicrobial drug combination commonly prescribed in children and adults. The study objectives were to validate and apply an HPLC-MS/MS method to quantify TMP-SMX in dried plasma spots (DPS) and dried urine spots (DUS), and perform a comparability analysis with liquid matrices.
Results: For TMP the validated range was 100-50,000 ng/ml for DPS and 500-250,000 ng/ml for DUS; for SMX, the validated range was 1000-500,000 ng/ml for both DPS and DUS.
Unlabelled: Porosomes are secretory portals located at the cell plasma membrane involved in the regulated release of intravesicular contents from cells. Porosomes have been immunoisolated from a number of cells including the exocrine pancreas and neurons, biochemically characterized, and functionally reconstituted into an artificial lipid membrane. In the current study, the proteome of the porosome complex in mouse insulinoma Min6 cells was determined, demonstrating among other proteins, the presence of 30 core proteins including the heat shock protein Hsp90.
View Article and Find Full Text PDFCup-shaped lipoprotein structures called porosomes are the universal secretory portals at the cell plasma membrane, where secretory vesicles transiently dock and fuse to release intravesicular contents. In neurons, porosomes measure ~15 nm and are comprised of nearly 40 proteins, among them SNAREs, ion channels, the G(αo) G-protein and several structural proteins. Earlier studies report the interaction of specific lipids and their influence on SNAREs, ion channels and G-protein function.
View Article and Find Full Text PDFNeutralizing anti-factor VIII (FVIII) antibodies that develop in patients with hemophilia A and in murine hemophilia A models, clinically termed "inhibitors," bind to several distinct surfaces on the FVIII-C2 domain. To map these epitopes at high resolution, 60 recombinant FVIII-C2 proteins were generated, each having a single surface-exposed residue mutated to alanine or a conservative substitution. The binding kinetics of these muteins to 11 monoclonal, inhibitory anti-FVIII-C2 antibodies were evaluated by surface plasmon resonance and the results compared with those obtained for wild-type FVIII-C2.
View Article and Find Full Text PDF