Publications by authors named "Kenneth Kozloff"

Macrophage efferocytosis (clearance of apoptotic cells) is crucial for tissue homeostasis and wound repair, where macrophages secrete factors that promote resolution of inflammation and regenerative signalling. This study examined the role of efferocytic macrophage-associated CCL2 secretion, its influence on mesenchymal stem/progenitor cell (MSPC) chemotaxis, and in vivo cell recruitment using Ccr2 (KO) mice with disrupted CCL2 receptor signalling in two regenerative models: ossicle implants and ulnar stress fractures. Single cell RNA sequencing and PCR validation indicated that efferocytosis of various apoptotic cells at bone injury sites (osteoblasts, pre-osteoblasts, MSPC) upregulated CCL2.

View Article and Find Full Text PDF

This study aimed to compare running biomechanics and biomechanical variability across 3 run segments and between conditions for 5-km outdoor overground and indoor treadmill running. Seventy-one recreationally-active adults (31F, 40 M; age: 37 ± 11 years; body mass index: 22.9 ± 2.

View Article and Find Full Text PDF

We evaluated the potential of sclerostin antibody (SclAb) therapy to enhance osseointegration of dental and orthopaedic implants in a mouse model (Brtl/+) mimicking moderate to severe Osteogenesis Imperfecta (OI). To address the challenges in achieving stable implant integration in compromised bone conditions, our aim was to determine the effectiveness of sclerostin antibody (SclAb) at improving bone-to-implant contact and implant fixation strength. Utilizing a combination of micro-computed tomography, mechanical push-in testing, immunohistochemistry, and Western blot analysis, we observed that SclAb treatment significantly enhances bone volume fraction (BV/TV) and bone-implant contact (BIC) in Brtl/+ mice, suggesting a normalization of bone structure toward WT levels.

View Article and Find Full Text PDF

Background: Bone readiness for implant placement is typically evaluated by bone quality/density on 2-dimensional radiographs and cone beam computed tomography at an arbitrary time between 3 and 6 months after tooth extraction and alveolar ridge preservation (ARP). The aim of this study is to investigate if high-frequency ultrasound (US) can classify bone readiness in humans, using micro-CT as a reference standard to obtain bone mineral density (BMD) and bone volume fraction (BVTV) of healed sockets receiving ARP in humans.

Methods: A total of 27 bone cores were harvested during the implant surgery from 24 patients who received prior extraction with ARP.

View Article and Find Full Text PDF

Craniofacial and dentoalveolar abnormalities are present in all types of osteogenesis imperfecta (OI). Mouse models of the disorder are critical to understand these abnormalities and underlying OI pathogenesis. Previous studies on severely affected OI mice report a broad spectrum of craniofacial phenotypes, exhibiting some similarities to the human disorder.

View Article and Find Full Text PDF

Stress fractures occur as a result of repeated mechanical stress on bone and are commonly found in the load-bearing lower extremities. Macrophages are key players in the immune system and play an important role in bone remodeling and fracture healing. However, the role of macrophages in stress fractures has not been adequately addressed.

View Article and Find Full Text PDF

Osteoporosis is a major public health threat with significant physical, psychosocial, and financial consequences. The calcaneus bone has been used as a measurement site for risk prediction of osteoporosis by noninvasive quantitative ultrasound (QUS). By adding optical contrast to QUS, our previous studies indicate that a combination of photoacoustic (PA) and QUS, that is, PAQUS, provides a novel opportunity to assess the health of human calcaneus.

View Article and Find Full Text PDF

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder affecting tissues of mesenchymal origin. Most individuals with HGPS harbor a de novo c.1824C > T (p.

View Article and Find Full Text PDF

Bone fractures are a widespread clinical event due to accidental falls and trauma or bone fragility; they also occur in association with various diseases and are common with aging. In the search for new therapeutic strategies, a crucial link between irisin and bone fractures has recently emerged. To explore this issue, we subjected 8-week-old C57BL/6 male mice to tibial fracture, and then we treated them with intra-peritoneal injection of r-Irisin (100 µg/kg/weekly) or vehicle as control.

View Article and Find Full Text PDF

Atomic force microscopy-infrared spectroscopy (AFM-IR) and optical photothermal infrared spectroscopy (O-PTIR), which feature spectroscopic imaging spatial resolution down to ∼ 50 nm and ∼ 500 nm, respectively, were employed to characterize the nano- to microscale chemical compositional changes in bone. Since these changes are known to be age dependent, fluorescently labelled bone samples were employed. The average matrix/mineral ratio values decrease as the bone tissue matures as measured by both AFM-IR and O-PTIR, which agrees with previously published FTIR and Raman spectroscopy results.

View Article and Find Full Text PDF

Introduction And Hypothesis: Human menopause transition and post-menopausal syndrome, driven by reduced ovarian activity and estrogen levels, are associated with an increased risk for symptoms including but not limited to sexual dysfunction, metabolic disease, and osteoporosis. Current treatments are limited in efficacy and may have adverse consequences, so investigation for additional treatment options is necessary. Previous studies have demonstrated that percutaneous tibial nerve stimulation (PTNS) and electro-acupuncture near the tibial nerve are minimally invasive treatments that increase vaginal blood perfusion or serum estrogen in the rat model.

View Article and Find Full Text PDF

MamonJr, MA, Olthof, SBH, Burns, GT, Lepley, AS, Kozloff, KM, and Zernicke, RF. Position-specific physical workload intensities in American collegiate football training. J Strength Cond Res 36(2): 420-426, 2022-Quantifying player training loads allows football coaching staff to make informed adjustments to the volume and intensity of training.

View Article and Find Full Text PDF

The photoacoustic (PA) technique is uniquely positioned for biomedical applications primarily due to its ability to visualize optical absorption contrast in deep tissue at ultrasound resolution. In this work, via both three-dimensional (3D) numerical simulations and experiments on human subjects, we investigated the possibility of PA measurement of human calcaneus bones in a non-invasive manner, as well as its feasibility to differentiate osteoporosis patients from normal subjects. The results from the simulations and the experiments both demonstrated that, when one side of the heel is illuminated by laser with light fluence under the ANSI safety limit, the PA signal generated in the human calcaneus bone can be detected by an ultrasonic transducer at the other side of the heel (i.

View Article and Find Full Text PDF

To date, pharmacological strategies designed to accelerate bone fracture healing are lacking. We subjected 8-week-old C57BL/6 male mice to closed, transverse, mid-diaphyseal tibial fractures and treated them with intraperitoneal injection of a vehicle or r-irisin (100 µg/kg/weekly) immediately following fracture for 10 days or 28 days. Histological analysis of the cartilaginous callus at 10 days showed a threefold increase in Collagen Type X ( = 0.

View Article and Find Full Text PDF

The trimeric thrombospondin homologs, TSP1 and TSP2, are both components of bone tissue and contribute in redundant and distinct ways to skeletal physiology. TSP1-null mice display increased femoral cross-sectional area and thickness due to periosteal expansion, as well as diminished matrix quality and impaired osteoclast function. TSP2-null mice display increased femoral cross-sectional thickness and reduced marrow area due to increased endosteal osteoblast activity, with very little periosteal expansion.

View Article and Find Full Text PDF

Incidences of low-trauma fractures among osteopenic women may be related to changes in bone quality. In this blinded, prospective-controlled study, compositional and heterogeneity contributors of bone quality to fracture risk were examined. We hypothesize that Raman spectroscopy can differentiate between osteopenic women with one or more fractures (cases) from women without fractures (controls).

View Article and Find Full Text PDF

Bone is a hierarchical material primarily composed of collagen, water, and mineral that is organized into discrete molecular, nano-, micro-, and macroscale structural components. In contrast to the structural knowledge of the collagen and mineral domains, the nanoscale porosity of bone is poorly understood. In this study, we introduce a well-established pore characterization technique, positron annihilation lifetime spectroscopy (PALS), to probe the nanoscale size and distribution of each component domain by analyzing pore sizes inherent to hydrated bone together with pores generated by successive removal of water and then organic matrix (including collagen and noncollagenous proteins) from samples of cortical bovine femur.

View Article and Find Full Text PDF

. To study the feasibility of combined functional photoacoustic (PA) and quantitative ultrasound (US) for diagnosis of osteoporosis based on the detection of chemical and microarchitecture (BMA) information in calcaneus bone. .

View Article and Find Full Text PDF

Bone is a composite biomaterial of mineral crystals, organic matrix, and water. Each contributes to bone quality and strength and may change independently, or together, with disease progression and treatment. Even so, there is a near ubiquitous reliance on ionizing x-ray-based approaches to measure bone mineral density (BMD) which is unable to fully characterize bone strength and may not adequately predict fracture risk.

View Article and Find Full Text PDF
Article Synopsis
  • Sclerostin antibody (SclAb) therapy is being explored as a potential treatment for osteogenesis imperfecta (OI), but most research has been conducted on mouse models, leading to a lack of data on the human response to the therapy.* -
  • In this study, bone tissue from pediatric OI patients was treated with different doses of SclAb in vitro and implanted into mice to analyze cellular responses and gene expression related to osteoblasts.* -
  • Results showed that SclAb treatment increased markers for osteoblasts in OI bone, with varying responses based on the baseline gene expression levels; the therapy also led to positive bone formation in the implanted OI bone observed through imaging techniques.*
View Article and Find Full Text PDF

Null mutations in CRTAP or P3H1, encoding cartilage-associated protein and prolyl 3-hydroxylase 1, cause the severe bone dysplasias, types VII and VIII osteogenesis imperfecta. Lack of either protein prevents formation of the ER prolyl 3-hydroxylation complex, which catalyzes 3Hyp modification of types I and II collagen and also acts as a collagen chaperone. To clarify the role of the A1 3Hyp substrate site in recessive bone dysplasia, we generated knock-in mice with an α1(I)P986A substitution that cannot be 3-hydroxylated.

View Article and Find Full Text PDF

As a dedicated experimentalist, John Currey praised the high potential of finite element (FE) analysis but also recognized its critical limitations. The application of the FE methodology to bone tissue is reviewed in the light of his enthusiastic and colorful statements. In the past decades, FE analysis contributed substantially to the understanding of structure-function properties in the hierarchical organization of bone and to the simulation of bone adaptation.

View Article and Find Full Text PDF

Bone marrow stromal cells (BMSCs) are versatile mesenchymal cell populations underpinning the major functions of the skeleton, a majority of which adjoin sinusoidal blood vessels and express C-X-C motif chemokine ligand 12 (CXCL12). However, how these cells are activated during regeneration and facilitate osteogenesis remains largely unknown. Cell-lineage analysis using Cxcl12-creER mice reveals that quiescent Cxcl12-creER perisinusoidal BMSCs differentiate into cortical bone osteoblasts solely during regeneration.

View Article and Find Full Text PDF
Article Synopsis
  • Osteogenesis imperfecta (OI) is a rare condition that leads to fragile bones, primarily affecting children and making it hard to conduct clinical trials; thus, researchers often use genetically modified mice to study potential treatments.
  • A new treatment, sclerostin antibody (SclAb), shows promise for improving bone density, but its effects on pediatric patients with OI have not yet been tested.
  • The study employs a novel method by implanting patient-derived bone samples into mice to assess the effectiveness of SclAb over different time frames, using various techniques to evaluate bone cell survival, activity, and overall treatment response.
View Article and Find Full Text PDF