Publications by authors named "Kenneth Kin Wah To"

Purpose: This study aimed to evaluate the prevalence and predictors of frailty and the association between frailty and neurocognitive impairments among Chinese survivors of childhood cancer.

Methods: A total of 185 survivors of childhood cancer were recruited from a long-term follow-up clinic in Hong Kong (response rate: 94.4%; 48.

View Article and Find Full Text PDF

Background: Multidrug resistance (MDR) limits successful cancer chemotherapy. P-glycoprotein (P-gp), BCRP and MRP1 are the key triggers of MDR. Unfortunately, no MDR modulator was approved by FDA to date.

View Article and Find Full Text PDF

Cancer immunotherapy, exemplified by the remarkable clinical benefits of the immune checkpoint blockade and chimeric antigen receptor T-cell therapy, is revolutionizing cancer therapy. They induce long-term tumor regression and overall survival benefit in many types of cancer. With the advances in our knowledge about the tumor immune microenvironment, remarkable progress has been made in the development of small-molecule drugs for immunotherapy.

View Article and Find Full Text PDF

Objective: Gut microbiota is a key player in dictating immunotherapy response. We aimed to explore the immunomodulatory effect of probiotic and its role in improving anti-programmed cell death protein 1 (PD1) efficacy against colorectal cancer (CRC).

Design: The effects of in anti-PD1 response were assessed in syngeneic mouse models and azoxymethane/dextran sulfate sodium-induced CRC model.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) have induced durable clinical responses in a subset of patients with colorectal cancer (CRC). However, the dis-satisfactory response rate and the lack of appropriate biomarkers for selecting suitable patients to be treated with ICIs pose a major challenge to current immunotherapies. Inflammation-related molecule A20 is closely related to cancer immune response, but the effect of A20 on "eat-me" signal and immunotherapy efficacy remains elusive.

View Article and Find Full Text PDF

Background: Survivors of childhood acute lymphoblastic leukemia (ALL) are at-risk of developing cognitive impairment and neurobehavioral symptoms. Inflammation induced by a compromised health status during cancer survivorship is proposed as a pathophysiological mechanism underlying cognitive impairment in cancer survivors.

Objectives: To evaluate the associations of biomarkers of inflammation with attention and neurobehavioral outcomes in survivors of childhood ALL, and to identify clinical factors associated with biomarkers of inflammation in this cohort.

View Article and Find Full Text PDF

Multidrug resistance (MDR) is the phenomenon in which cancer cells simultaneously develop resistance to a broad spectrum of structurally and mechanistically unrelated drugs. MDR severely hinders the effective treatment of cancer and is the major cause of chemotherapy failure. ATP-binding cassette (ABC) transporters are extensively expressed in various body tissues, and actively transport endogenous and exogenous substrates through biological membranes.

View Article and Find Full Text PDF
Article Synopsis
  • Multidrug resistance (MDR) is a key factor in chemotherapy failure, primarily due to the overexpression of ABC transporters like ABCB1 and ABCG2, and currently, no MDR modulators are approved for clinical use.
  • Researchers found that lazertinib, a third-generation tyrosine kinase inhibitor, can boost the effectiveness of anticancer drugs that are substrates for these MDR transporters by inhibiting their drug efflux activities.
  • Lazertinib works by competitively binding to the ATP-binding site of ABCB1 and ABCG2, preventing drug transport out of the cancer cells, thus enhancing the accumulation of chemotherapy drugs without altering transporter expression or other associated signaling pathways.
View Article and Find Full Text PDF

Multidrug resistance (MDR) mediated by ATP binding cassette subfamily B member 1 (ABCB1) is significantly hindering effective cancer chemotherapy. However, currently, no ABCB1-inhibitory drugs have been approved to treat MDR cancer clinically, mainly due to the inhibitor specificity, toxicity, and drug interactions. Here, we reported that three polyoxypregnanes (POPs) as the most abundant constituents of () were novel ABCB1-modulatory pro-drugs, which underwent intestinal microbiota-mediated biotransformation to generate active metabolites.

View Article and Find Full Text PDF

Bacteriophages (Phages) are antibacterial viruses that are unaffected by antibiotic drug resistance. Many Phase I and Phase II phage therapy clinical trials have shown acceptable safety profiles. However, none of the completed trials could yield data supporting the promising observations noted in the experimental phage therapy.

View Article and Find Full Text PDF

Concurrent use of simvastatin (SV) and J. Ellis (GJ) was adopted in patients with multi-morbidity, such as stroke rehabilitation patients with NASH. Although hepatotoxicity has been reported in both of them and NASH could alter the pharmacokinetics of drugs/herbs, the interaction between SV and GJ and the related hepatotoxicity remained uninvestigated under neither healthy nor NASH condition.

View Article and Find Full Text PDF

Background And Purpose: Altered drug pharmacokinetics is a significant concern in non-alcoholic steatohepatitis (NASH) patients. Although high-fat high-cholesterol (HFHC) diet-induced NASH (HFHC-NASH) rats could simulate the typical dysregulation of cholesterol in NASH patients, experimental investigation on the altered drug pharmacokinetics in this model are limited. Thus, the present study comprehensive investigates the nature of such altered pharmacokinetics using simvastatin as the model drug.

View Article and Find Full Text PDF

Overexpression of adenosine triphosphate (ATP)-binding cassette subfamily G member 2 (ABCG2) in cancer cells is known to cause multidrug resistance (MDR), which severely limits the clinical efficacy of chemotherapy. Currently, there is no FDA-approved MDR modulator for clinical use. In this study, rociletinib (CO-1686), a mutant-selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), was found to significantly improve the efficacy of ABCG2 substrate chemotherapeutic agents in the transporter-overexpressing cancer cells and in MDR tumor xenografts in nude mice, without incurring additional toxicity.

View Article and Find Full Text PDF

Background: Inhibition of ABC transporters is considered the most effective way to circumvent multidrug resistance (MDR). In the present study, we evaluated the MDR modulatory potential of ERK5-IN-1, a potent extracelluar signal regulated kinase 5 (ERK5) inhibitor.

Methods: The cytotoxicity and MDR reversal effect of ERK5-IN-1 were assessed by MTT assay.

View Article and Find Full Text PDF

Background/aims: Multidrug resistance (MDR) induced by the ABC transporter subfamily B member 1 (ABCB1) and subfamilyG member 2 (ABCG2) limits successful cancer chemotherapy and no commercially available MDR modulator is used in the clinic. In the current study, we aimed to investigate the effects of PCI29732 on the enhancement of chemotherapeutic agents.

Methods: Cell cytotoxicity and reversal effect were measured with MTT assay.

View Article and Find Full Text PDF

In advanced lung cancer, epidermal growth factor tyrosine kinase inhibitors (EGFR TKIs) have extraordinary clinical efficacy. However, their usefulness is severely compromised by drug resistance mediated by various mechanisms, the most important of which is the secondary EGFR T790M mutation. The mutation blocks the binding of EGFR TKIs to the receptor kinase, thereby abolishing the therapeutic efficacy.

View Article and Find Full Text PDF

Alectinib, an inhibitor of anaplastic lymphoma kinase (ALK), was approved by the Food and Drug Administration (FDA) for the treatment of patients with ALK-positive non-small cell lung cancer (NSCLC). Here we investigated the reversal effect of alectinib on multidrug resistance (MDR) induced by ATP-binding cassette (ABC) transporters, which is the primary cause of chemotherapy failure. We provide the first evidence that alectinib increases the sensitivity of ABCB1- and ABCG2-overexpressing cells to chemotherapeutic agents in vitro and in vivo.

View Article and Find Full Text PDF

A series of new platinum Pt(II) compounds possessing a bidentate leaving ligand modified from oxaliplatin has been synthesized, with one of the oxygen ligating atom substituted for a sulphur atom (resulting in a Pt-NNSO coordination core structure). The general structures are R,R-diaminocyclohexane (DACH)-Pt-(methylthio)acetic acid (K4) and DACH-Pt-(thiophenylacetic acid) (K4 derivatives). Substitution of an electron donating or withdrawing group at the ortho or para position on the phenyl ring of K4 derivatives was found to affect the complexes' stability, reactivity with the biological molecules (5'-guanosine monophosphate (5'-GMP) and L-methionine (L-Met)) and anticancer activity.

View Article and Find Full Text PDF

Objectives: To investigate and elucidate the mechanism for the potentiation of cisplatin anticancer activity by belinostat in platinum (Pt)-resistant lung cancer cells.

Materials And Methods: Combination of cisplatin and belinostat was investigated in two pairs of parental and cisplatin-resistant non-small cell lung cancer (NSCLC) cell lines. The Pt-resistant cell models exhibited overexpression of the efflux transporter ABCC2 and enhanced DNA repair capacity.

View Article and Find Full Text PDF

The overexpression of ATP-binding cassette (ABC) transporters has been proved to be a major trigger for multidrug resistance (MDR) in certain types of cancer. In our study, we investigated whether osimertinib (AZD9291), a third-generation irreversible tyrosine kinase inhibitor of both activating EGFR mutations and resistance-associated T790M point mutation, could reverse MDR induced by ABCB1 and ABCG2 in vitro, in vivo, and ex vivo Our results showed that osimertinib significantly increased the sensitivity of ABCB1- and ABCG2-overexpressing cells to their substrate chemotherapeutic agents in vitro and in the model of ABCB1-overexpressing KBv200 cell xenograft in nude mice. Mechanistically, osimertinib increased the intracellular accumulations of doxorubicin (DOX) and Rhodamine 123 (Rho 123) by inhibiting the efflux function of the transporters in ABCB1- or ABCG2-overexpressing cells but not in their parental sensitive cells.

View Article and Find Full Text PDF

A polyoxypregnane aglycone, 12β-O-acetyl-11α-O-isobutyryltenacigenin B, and four polyoxypregnane glycosides with a pachybionic acid ester moiety, 12β-O-acetyl-3-O-(6-deoxy-3-O-methyl-β-D-allopyranosyl-(1→4)-β-D-oleandronyl)-11α-O-isobutyryltenacigenin B, 12β-O-acetyl-3-O-(6-deoxy-3-O-methyl-β-D-allopyranosyl-(1→4)-β-D-oleandronyl)-11α-O-tigloyltenacigenin B, 12β-O-acetyl-3-O-(6-deoxy-3-O-methyl-β-D-allopyranosyl-(1→4)-β-D-oleandronyl)-11α-O-2-methylbutyryltenacigenin B, and 12β-O-acetyl-3-O-(β-D-glucopyranosyl-(1→4)-6-deoxy-3-O-methyl-β-D-allopyranosyl-(1→4)-D-oleandronyl)-11α-O-tigloyltenacigenin B, were isolated from the canes of Marsdenia tenacissima, together with a disaccharide derivative. Their structures were elucidated by extensive spectroscopic analysis, and the absolute configurations were further determined by X-ray crystallographic analysis. With the exception of the disaccharide derivative, all five compounds are unusual naturally occurring polyoxypregnane glycosides bearing an open-chain sugar moiety.

View Article and Find Full Text PDF

Platinum (Pt)-based anticancer drugs, exemplified by cisplatin, are key components in combination chemotherapy. However, their effective use is hindered by toxicity and emergence of drug resistance. They bind to DNA and mainly form the Pt-GG diadduct, subsequently leading to apoptosis to mediate cell death.

View Article and Find Full Text PDF

Over-expression of ATP-binding cassette transporters is one of the most important mechanisms responsible for multidrug resistance. Here, we aimed to develop a stable polymeric nanoparticle system by flash nanoprecipitation (FNP) for enhanced anticancer drug delivery into drug resistant cancer cells. As an antisolvent precipitation process, FNP works best for highly lipophilic solutes (logP>6).

View Article and Find Full Text PDF

The overexpression of ATP-binding cassette (ABC) transporters is closely associated with the development of multidrug resistance (MDR) in certain types of cancer, which represents a formidable obstacle to the successful cancer chemotherapy. Here, we investigated that cetuximab, an EGFR monoclonal antibody, reversed the chemoresistance mediated by ABCB1, ABCG2 or ABCC1. Our results showed that cetuximab significantly enhanced the cytotoxicity of ABCB1 substrate agent in ABCB1-overexpressing MDR cells but had no effect in their parental drug sensitive cells and ABCC1, ABCG2 overexpressing cells.

View Article and Find Full Text PDF