We show that design of DNA secondary structures is improved by extending the base pairing alphabet beyond A-T and G-C to include the pair between 2-amino-8-(1'-β-d-2'-deoxyribofuranosyl)-imidazo-[1,2-]-1,3,5-triazin-(8)-4-one and 6-amino-3-(1'-β-d-2'-deoxyribofuranosyl)-5-nitro-(1)-pyridin-2-one, abbreviated as and . To obtain the thermodynamic parameters needed to include P-Z pairs in the designs, we performed 47 optical melting experiments and combined the results with previous work to fit free energy and enthalpy nearest neighbor folding parameters for P-Z pairs and G-Z wobble pairs. We find G-Z pairs have stability comparable to that of A-T pairs and should therefore be included as base pairs in structure prediction and design algorithms.
View Article and Find Full Text PDFWe show that design of DNA secondary structures is improved by extending the base pairing alphabet beyond A-T and G-C to include the pair between 2-amino-8-(1'-β-D-2'-deoxyribofuranosyl)-imidazo-[1,2- ]-1,3,5-triazin-(8 )-4-one and 6-amino-3-(1'-β-D-2'-deoxyribofuranosyl)-5-nitro-(1 )-pyridin-2-one, simply P and Z. To obtain the thermodynamic parameters needed to include P-Z pairs in the designs, we performed 47 optical melting experiments and combined the results with previous work to fit a new set of free energy and enthalpy nearest neighbor folding parameters for P-Z pairs and G-Z wobble pairs. We find that G-Z pairs have stability comparable to A-T pairs and therefore should be considered quantitatively by structure prediction and design algorithms.
View Article and Find Full Text PDF