Publications by authors named "Kenneth K Jensen"

Sensitivity to interaural time differences (ITDs) in acoustic hearing involves comparison of interaurally frequency-matched inputs. Bilateral cochlear-implant arrays are, however, only approximately aligned in angular insertion depth and scalar location across the cochleae. Interaural place-of-stimulation mismatch therefore has the potential to impact binaural perception.

View Article and Find Full Text PDF

Hypothesis: Bilateral cochlear-implant (BI-CI) users will have a range of interaural insertion-depth mismatch because of different array placement or characteristics. Mismatch will be larger for electrodes located near the apex or outside scala tympani, or for arrays that are a mix of precurved and straight types.

Background: Brainstem superior olivary-complex neurons are exquisitely sensitive to interaural-difference cues for sound localization.

View Article and Find Full Text PDF

Accurate and reliable information about three-dimensional (3D) knee joint laxity can prevent misdiagnosis and avoid incorrect treatments. Nevertheless, knee laxity assessments presented in the literature suffer from significant drawbacks such as soft tissue artifacts, restricting the knee within the measurement, and the absence of quantitative knee ligament property information. In this study, we demonstrated the applicability of a novel methodology for measuring 3D knee laxity, combining robotics- and image-based technology.

View Article and Find Full Text PDF

Objective: Magnetic resonance imaging (MRI)-based techniques for non-invasive assessing liver iron concentration (LIC) in patients with iron overload have a limited upper measuring range around 35 mg/g dry weight, caused by signal loss from accelerated T1-, T2-, T2* shortening with increasing LIC. Expansion of this range is necessary to allow evaluation of patients with very high LIC.

Aim: To assess measuring range of a gradient-echo R2* method and a T1-weighted spin-echo (SE), signal intensity ratio (SIR)-based method (TE = 25 ms, TR = 560 ms), and to extend the upper measuring range of the SIR method by optimizing echo time (TE) and repetition time (TR) in iron-loaded minipigs.

View Article and Find Full Text PDF

Bilateral cochlear implants (BI-CIs) or a CI for single-sided deafness (SSD-CI; one normally functioning acoustic ear) can partially restore spatial-hearing abilities, including sound localization and speech understanding in noise. For these populations, however, interaural place-of-stimulation mismatch can occur and thus diminish binaural sensitivity that relies on interaurally frequency-matched neurons. This study examined whether plasticity-reorganization of central neural pathways over time-can compensate for peripheral interaural place mismatch.

View Article and Find Full Text PDF

Interaural place-of-stimulation mismatch for bilateral cochlear-implant (BI-CI) listeners is often evaluated using pitch-comparison tasks that can be susceptible to procedural biases. Bias effects were compared for three sequential interaural pitch-comparison tasks in six BI-CI listeners using single-electrode direct stimulation. The reference (right ear) was a single basal, middle, or apical electrode.

View Article and Find Full Text PDF

Objectives: Cochlear implants (CIs) restore some spatial advantages for speech understanding in noise to individuals with single-sided deafness (SSD). In addition to a head-shadow advantage when the CI ear has a better signal-to-noise ratio, a CI can also provide a binaural advantage in certain situations, facilitating the perceptual separation of spatially separated concurrent voices. While some bilateral-CI listeners show a similar binaural advantage, bilateral-CI listeners with relatively large asymmetries in monaural speech understanding can instead experience contralateral speech interference.

View Article and Find Full Text PDF

Musculoskeletal (MS) models can be used to study the muscle, ligament, and joint mechanics of natural knees. However, models that both capture subject-specific geometry and contain a detailed joint model do not currently exist. This study aims to first develop magnetic resonance image (MRI)-based subject-specific models with a detailed natural knee joint capable of simultaneously estimating in vivo ligament, muscle, tibiofemoral (TF), and patellofemoral (PF) joint contact forces and secondary joint kinematics.

View Article and Find Full Text PDF

Normal-hearing (NH) listeners can extract and integrate speech fragments from momentary dips in the level of a fluctuating masker, yielding a fluctuating-masker benefit (FMB) for speech understanding relative to a stationary-noise masker. Hearing-impaired (HI) listeners generally show less FMB, suggesting a dip-listening deficit attributable to suprathreshold spectral or temporal distortion. However, reduced FMB might instead result from different test signal-to-noise ratios (SNRs), reduced absolute audibility of otherwise unmasked speech segments, or age differences.

View Article and Find Full Text PDF

Current clinical practice in programming a cochlear implant (CI) for individuals with single-sided deafness (SSD) is to maximize the transmission of speech information via the implant, with the implicit assumption that this will also result in improved spatial-hearing abilities. However, binaural sensitivity is reduced by interaural place-of-stimulation mismatch, a likely occurrence with a standard CI frequency-to-electrode allocation table (FAT). As a step toward reducing interaural mismatch, this study investigated whether a test of interaural-time-difference (ITD) discrimination could be used to estimate the acoustic frequency yielding the best place match for a given CI electrode.

View Article and Find Full Text PDF

Whereas it is clear from anatomical studies that all birds have complex interaural canals connecting their middle ears, the effect of interaural coupling on directional hearing has been disputed. A reason for conflicting results in earlier studies may have been that the function of the tympanic ear and hence of the interaural coupling is sensitive to variations in the intracranial air pressure. In awake birds, the middle ears and connected cavities are vented actively through the pharyngotympanic tube.

View Article and Find Full Text PDF

Lingual articulation in humans is one of the primary means of vocal tract resonance filtering that produces the characteristic vowel formants of speech. In songbirds, the function of the tongue in song has not been thoroughly examined, although recent research has identified the oropharyngeal-esophageal cavity as a resonance filter that is actively tuned to the frequency of the song. In northern cardinals (Cardinalis cardinalis), the volume of this cavity is inversely proportional to the frequency of the song above 2 kHz.

View Article and Find Full Text PDF

The magnetic compass sense of animals is currently thought to be based on light-dependent processes like the proposed radical pair mechanism. In accordance, many animals show orientation responses that depend on light. However, the orientation responses depend on the wavelength and irradiance of monochromatic light in rather complex ways that cannot be explained directly by the radical pair mechanism.

View Article and Find Full Text PDF

In a study of hooded crow communication over open fields an excellent correspondence is found between the attenuation spectra predicted by a "turbulence-modified ground effect plus atmospheric absorption" model, and crow call attenuation data. Sound propagation predictions and background noise measurements are used to predict an optimal frequency range for communication ("sound communication window") from an average of crow call spectra predicted for every possible combination of the sender/receiver separations 300, 600, 900, and 1200 m and heights 3,6,9 m thereby creating a matrix assumed relevant to crow interterritorial communication. These predictions indicate an optimal frequency range for sound communication between 500 Hz and 2 kHz.

View Article and Find Full Text PDF

The principal physical mechanism of sound generation is similar in songbirds and humans, despite large differences in their vocal organs. Whereas vocal fold dynamics in the human larynx are well characterized, the vibratory behaviour of the sound-generating labia in the songbird vocal organ, the syrinx, is unknown. We present the first high-speed video records of the intact syrinx during induced phonation.

View Article and Find Full Text PDF

Envelope modulations have been shown important in determining the effectiveness of masking noises. For example, the threshold for detecting a signal flanked by maskers is lower if the maskers and the signal are modulated with different envelopes, rather than the same envelope (comodulation). This threshold change is called the comodulation detection difference (CDD).

View Article and Find Full Text PDF

The hearing threshold and critical ratios were estimated psycho-acoustically for captive wild-caught hooded crows by a yes/no procedure and the method of constant stimuli. Human subjects were tested in the same setup for direct comparison and to check for experimental artifacts. The hooded crows were found to have excellent low-frequency hearing capabilities compared to other passerine birds.

View Article and Find Full Text PDF