A novel 1,3,5-trisubstituted benzamide thrombin inhibitor template was designed via hybridization of a known aminopyridinoneacetamide and a known 1,3,5-trisubstituted phenyl ether. Optimization of this lead afforded a novel potent series of biaryl 1,3,5-trisubstituted benzenes with excellent functional anticoagulant potency.
View Article and Find Full Text PDFOptimization of a previously reported thrombin inhibitor, 9-hydroxy-9-fluorenylcarbonyl-l-prolyl-trans-4-aminocyclohexylmethylamide (1), by replacing the aminocyclohexyl P1 group provided a new lead structure, 9-hydroxy-9-fluorenylcarbonyl-l-prolyl-2-aminomethyl-5-chlorobenzylamide (2), with improved potency (K(i) = 0.49 nM for human thrombin, 2x APTT = 0.37 microM in human plasma) and pharmacokinetic properties (F = 39%, iv T(1/2) = 13 h in dogs).
View Article and Find Full Text PDFModification of lead compound 1 by reducing lipophilicity in the P3 group produced a series of low molecular weight thrombin inhibitors with excellent potency in functional assays, metabolic stability, and oral bioavailability. These modifications led to the identification of two optimized compounds, 14 and 16.
View Article and Find Full Text PDFIn an effort to discover potent, clinically useful thrombin inhibitors, a rapid analogue synthetic approach was used to explore the P(1) region. Various benzylamines were coupled to a pyridine/pyrazinone P(2)-P(3) template. One compound with an o-thiadiazole benzylic substitution was found to have a thrombin K(i) of 0.
View Article and Find Full Text PDF