Enhancers integrate transcription factor signaling pathways that drive cell fate specification in the developing brain. We paired enhancer labeling and single-cell RNA-sequencing (scRNA-seq) to delineate and distinguish specification of neuronal lineages in mouse medial, lateral, and caudal ganglionic eminences (MGE, LGE, and CGE) at embryonic day (E)11.5.
View Article and Find Full Text PDFEnhancers are -regulatory elements that play critical regulatory roles in modulating developmental transcription programs and driving cell-type-specific and context-dependent gene expression in the brain. The development of massively parallel reporter assays (MPRAs) has enabled high-throughput functional screening of candidate DNA sequences for enhancer activity. Tissue-specific screening of in vivo enhancer function at scale has the potential to greatly expand our understanding of the role of non-coding sequences in development, evolution, and disease.
View Article and Find Full Text PDFCortical interneuron (CIN) dysfunction is thought to play a major role in neuropsychiatric conditions like epilepsy, schizophrenia and autism. It is therefore essential to understand how the development, physiology, and functions of CINs influence cortical circuit activity and behavior in model organisms such as mice and primates. While transgenic driver lines are powerful tools for studying CINs in mice, this technology is limited in other species.
View Article and Find Full Text PDF