Publications by authors named "Kenneth I Joy"

Visualization and analysis techniques play a key role in the discovery of relevant features in ensemble data. Trends, in the form of persisting commonalities or differences in time-varying ensemble datasets, constitute one of the most expressive feature types in ensemble analysis. We develop a flow-graph representation as the core of a system designed for the visual analysis of trends in time-varying ensembles.

View Article and Find Full Text PDF

Advances in computational power now enable domain scientists to address conceptual and parametric uncertainty by running simulations multiple times in order to sufficiently sample the uncertain input space. While this approach helps address conceptual and parametric uncertainties, the ensemble datasets produced by this technique present a special challenge to visualization researchers as the ensemble dataset records a distribution of possible values for each location in the domain. Contemporary visualization approaches that rely solely on summary statistics (e.

View Article and Find Full Text PDF

Effective display and visual analysis of complex 3D data is a challenging task. Occlusions, overlaps, and projective distortions-as frequently caused by typical 3D rendering techniques-can be major obstacles to unambiguous and robust data analysis. Slicing planes are a ubiquitous tool to resolve several of these issues.

View Article and Find Full Text PDF

Particle tracing in time-varying flow fields is traditionally performed by numerical integration of the underlying vector field. This procedure can become computationally expensive, especially in scattered, particle-based flow fields, which complicate interpolation due to the lack of an explicit neighborhood structure. If such a particle-based flow field allows for the identification of consecutive particle positions, an alternative approach to particle tracing can be employed: we substitute repeated numerical integration of vector data by geometric interpolation in the highly dynamic particle system as defined by the particle-based simulation.

View Article and Find Full Text PDF

Sets of simulation runs based on parameter and model variation, so-called ensembles, are increasingly used to model physical behaviors whose parameter space is too large or complex to be explored automatically. Visualization plays a key role in conveying important properties in ensembles, such as the degree to which members of the ensemble agree or disagree in their behavior. For ensembles of time-varying vector fields, there are numerous challenges for providing an expressive comparative visualization, among which is the requirement to relate the effect of individual flow divergence to joint transport characteristics of the ensemble.

View Article and Find Full Text PDF

Numerical ensemble forecasting is a powerful tool that drives many risk analysis efforts and decision making tasks. These ensembles are composed of individual simulations that each uniquely model a possible outcome for a common event of interest: e.g.

View Article and Find Full Text PDF

Multifluid simulations often create volume fraction data, representing fluid volumes per region or cell of a fluid data set. Accurate and visually realistic extraction of fluid boundaries is a challenging and essential task for efficient analysis of multifluid data. In this work, we present a new material interface reconstruction method for such volume fraction data.

View Article and Find Full Text PDF

Characterizing the interplay between the vortices and forces acting on a wind turbine's blades in a qualitative and quantitative way holds the potential for significantly improving large wind turbine design. This paper introduces an integrated pipeline for highly effective wind and force field analysis and visualization. We extract vortices induced by a turbine's rotation in a wind field, and characterize vortices in conjunction with numerically simulated forces on the blade surfaces as these vortices strike another turbine's blades downstream.

View Article and Find Full Text PDF

Streamline computation in a very large vector field data set represents a significant challenge due to the nonlocal and data-dependent nature of streamline integration. In this paper, we conduct a study of the performance characteristics of hybrid parallel programming and execution as applied to streamline integration on a large, multicore platform. With multicore processors now prevalent in clusters and supercomputers, there is a need to understand the impact of these hybrid systems in order to make the best implementation choice.

View Article and Find Full Text PDF

Many flow visualization techniques, especially integration-based methods, are problematic when the measured data exhibit noise and discretization issues. Particularly, this is the case for flow-sensitive phase-contrast magnetic resonance imaging (PC-MRI) data sets which not only record anatomic information, but also time-varying flow information. We propose a novel approach for the visualization of such data sets using integration-based methods.

View Article and Find Full Text PDF

Applying certain visualization techniques to datasets described on unstructured grids requires the interpolation of variables of interest at arbitrary locations within the dataset's domain of definition. Typical solutions to the problem of finding the grid element enclosing a given interpolation point make use of a variety of spatial subdivision schemes. However, existing solutions are memory- intensive, do not scale well to large grids, or do not work reliably on grids describing complex geometries.

View Article and Find Full Text PDF

Integral surfaces are ideal tools to illustrate vector fields and fluid flow structures. However, these surfaces can be visually complex and exhibit difficult geometric properties, owing to strong stretching, shearing and folding of the flow from which they are derived. Many techniques for non-photorealistic rendering have been presented previously.

View Article and Find Full Text PDF

A new material interface reconstruction method for volume fraction data is presented. Our method is comprised of two components: first, we generate initial interface topology; then, using a combination of smoothing and volumetric forces within an active interface model, we iteratively transform the initial material interfaces into high-quality surfaces that accurately approximate the problem's volume fractions. Unlike all previous work, our new method produces material interfaces that are smooth, continuous across cell boundaries, and segment cells into regions with proper volume.

View Article and Find Full Text PDF

Driven by the ability to generate ever-larger, increasingly complex data, there is an urgent need in the scientific community for scalable analysis methods that can rapidly identify salient trends in scientific data. Query-Driven Visualization (QDV) strategies are among the small subset of techniques that can address both large and highly complex data sets. This paper extends the utility of QDV strategies with a statistics-based framework that integrates nonparametric distribution estimation techniques with a new segmentation strategy to visually identify statistically significant trends and features within the solution space of a query.

View Article and Find Full Text PDF

Purpose: The structure of fiber tracts in DT-MRI data presents a challenging problem for visualization and analysis. We derive visualization of such traces from a local coherence measure and achieve much improved visual segmentation.

Methods: We introduce a coherence measure defined for fiber tracts.

View Article and Find Full Text PDF

Time and streak surfaces are ideal tools to illustrate time-varying vector fields since they directly appeal to the intuition about coherently moving particles. However, efficient generation of high-quality time and streak surfaces for complex, large and time-varying vector field data has been elusive due to the computational effort involved. In this work, we propose a novel algorithm for computing such surfaces.

View Article and Find Full Text PDF

The visualization and analysis of AMR-based simulations is integral to the process of obtaining new insight in scientific research. We present a new method for performing query-driven visualization and analysis on AMR data, with specific emphasis on time-varying AMR data. Our work introduces a new method that directly addresses the dynamic spatial and temporal properties of AMR grids that challenge many existing visualization techniques.

View Article and Find Full Text PDF

We present a novel approach for the direct computation of integral surfaces in time-dependent vector fields. As opposed to previous work, which we analyze in detail, our approach is based on a separation of integral surface computation into two stages: surface approximation and generation of a graphical representation. This allows us to overcome several limitations of existing techniques.

View Article and Find Full Text PDF

We present a new construction of lifted biorthogonal wavelets on surfaces of arbitrary two-manifold topology for compression and multiresolution representation. Our method combines three approaches: subdivision surfaces of arbitrary topology, B-spline wavelets, and the lifting scheme for biorthogonal wavelet construction. The simple building blocks of our wavelet transform are local lifting operations performed on polygonal meshes with subdivision hierarchy.

View Article and Find Full Text PDF

We present a novel approach to out-of-core time-varying isosurface visualization. We attempt to interactively visualize time-varying datasets which are too large to fit into main memory using a technique which is dramatically different from existing algorithms. Inspired by video encoding techniques, we examine the data differences between time steps to extract isosurface information.

View Article and Find Full Text PDF

The real-time display of huge geometry and imagery databases involves view-dependent approximations, typically through the use of precomputed hierarchies that are selectively refined at runtime. A classic motivating problem is terrain visualization in which planetary databases involving billions of elevation and color values are displayed on PC graphics hardware at high frame rates. This paper introduces a new diamond data structure for the basic selective-refinement processing, which is a streamlined method of representing the well-known hierarchies of right triangles that have enjoyed much success in real-time, view-dependent terrain display.

View Article and Find Full Text PDF

We present an algorithm for adaptively extracting and rendering isosurfaces from compressed time-varying volume data sets. Tetrahedral meshes defined by longest edge bisection are used to create a multiresolution representation of the volume in the spatial domain that is adapted over time to approximate the time-varying volume. The reextraction of the isosurface at each time step is accelerated with the vertex programming capabilities of modern graphics hardware.

View Article and Find Full Text PDF

We present a new method for topological segmentation in steady three-dimensional vector fields. Depending on desired properties, the algorithm replaces the original vector field by a derived segmented data set, which is utilized to produce separating surfaces in the vector field. We define the concept of a segmented data set, develop methods that produce the segmented data by sampling the vector field with streamlines, and describe algorithms that generate the separating surfaces.

View Article and Find Full Text PDF