Breast cancer invasion and metastasis result from a complex interplay between tumor cells and the tumor microenvironment (TME). Key oncogenic changes in the TME include aberrant synthesis, processing, and signaling of hyaluronan (HA). Hyaluronan-mediated motility receptor (RHAMM, CD168; HMMR) is an HA receptor enabling tumor cells to sense and respond to this aberrant TME during breast cancer progression.
View Article and Find Full Text PDFPurpose: The 80-gene molecular subtyping signature (80-GS) reclassifies a proportion of immunohistochemistry (IHC)-defined luminal breast cancers (estrogen receptor-positive [ER+], human epidermal growth factor receptor 2-negative [HER2-]) as Basal-Type. We report the association of 80-GS reclassification with neoadjuvant treatment response and 5-year outcome in patients with breast cancer.
Methods: Neoadjuvant Breast Registry Symphony Trial (NBRST; NCT01479101) is an observational, prospective study that included 1,069 patients with early-stage breast cancer age 18-90 years who received neoadjuvant therapy.
Significance: Poor sleep quality is a common and persistent problem reported by women with breast cancer (BC). Empirical evidence identifies many risk factors for self-reported sleep deficiency, but inconsistencies limit translation to practice.
Purpose: To increase understanding of risk factors predicting self-reported poor sleep quality in women with BC who completed the Breast Cancer Collaborative Registry (BCCR) questionnaire.
Breast cancer is the most frequently diagnosed malignancy in women in the United States and is second only to lung cancer as a cause of cancer death. To assist women who are at increased risk of developing breast cancer and their physicians in the application of individualized strategies to reduce breast cancer risk, NCCN has developed these guidelines for breast cancer risk reduction.
View Article and Find Full Text PDFPartner and localizer of BRCA2 (PALB2), plays an important functional role in DNA damage repair. Recent studies indicate that germline mutations in PALB2 predispose individuals to a high risk of developing familial breast cancer. Therefore, comprehensive identification of PALB2 germline mutations is potentially important for understanding their roles in tumorigenesis and for testing their potential utility as clinical targets.
View Article and Find Full Text PDFBreast cancers exhibit highly heterogeneous molecular profiles. Although gene expression profiles have been used to predict the risks and prognostic outcomes of breast cancers, the high variability of gene expression limits its clinical application. In contrast, genetic mutation profiles would be more advantageous than gene expression profiles because genetic mutations can be stably detected and the mutational heterogeneity widely exists in breast cancer genomes.
View Article and Find Full Text PDFRadiation therapy is a staple treatment for pancreatic cancer. However, owing to the intrinsic radioresistance of pancreatic cancer cells, radiation therapy often fails to increase survival of pancreatic cancer patients. Radiation impedes cancer cells by inducing DNA damage, which can activate cell cycle checkpoints.
View Article and Find Full Text PDFBackground: Genetic predisposition is the primary risk factor for familial breast cancer. For the majority of familial breast cancer, however, the genetic predispositions remain unknown. All newly identified predispositions occur rarely in disease population, and the unknown genetic predispositions are estimated to reach up to total thousands.
View Article and Find Full Text PDFBackground: BRCA1 plays an essential role in maintaining genome stability. Inherited BRCA1 germline mutation (BRCA1+) is a determined genetic predisposition leading to high risk of breast cancer. While BRCA1+ induces breast cancer by causing genome instability, most of the knowledge is known about somatic genome instability in breast cancer cells but not germline genome instability.
View Article and Find Full Text PDFGenetic predisposition plays a key role in the development of familial breast cancer. In spite of strong familial clustering of the disease and extensive efforts made during the past decade; however, progress has been slow in identifying genetic predisposition for the majority of familial breast cancer families. The question arises therefore as to whether current approaches are adequate in identifying the unknown genetic predisposition.
View Article and Find Full Text PDFTopo II poisons, which target topoisomerase II (topo II) to generate enzyme mediated DNA damage, have been commonly used for anti-cancer treatment. While clinical evidence demonstrate a capability of topo II poisons in inducing apoptosis in cancer cells, accumulating evidence also show that topo II poison treatment frequently results in cell cycle arrest in cancer cells, which was associated with subsequent resistance to these treatments. Results in this report indicate that treatment of MCF-7 and T47D breast cancer cells with topo II poisons resulted in an increased phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and an subsequent induction of G2/M cell cycle arrest.
View Article and Find Full Text PDFIntroduction: In response to gamma-irradiation (IR)-induced double-strand DNA breaks, cells undergo cell-cycle arrest, allowing time for DNA repair before reentering the cell cycle. G2/M checkpoint activation involves activation of ataxia telangiectasia mutated (ATM)/ATM- and rad3-related (ATR) kinases and inhibition of Cdc25 phosphatases, resulting in inhibition of Cdc2 kinase and subsequent G2/M cell-cycle arrest. Previous studies from our laboratory showed that the G2/M checkpoint activation after IR exposure of MCF-7 breast cancer cells is dependent on the activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) signaling.
View Article and Find Full Text PDFKSR1 (kinase suppressor of Ras 1) is a molecular scaffold and positive regulator of the Raf/MEK/ERK phosphorylation cascade. KSR1 is required for maximal ERK activation induced by growth factors and by some cytotoxic agents. We show here that KSR1 is also required for maximal ERK activation induced by UV light, ionizing radiation, or the DNA interstrand cross-linking agent mitomycin C (MMC).
View Article and Find Full Text PDFCancer Chemother Pharmacol
April 2009
Previous studies have indicated that the ERK1/2 MAP kinase signaling pathway plays an important role not only in cell growth, cell cycle regulation, and differentiation, but also in determining the sensitivity of cells to anticancer agents as well. Furthermore, expression of kinase suppressor of Ras-1 (KSR1), a molecular scaffold that modulates signaling through the ERK1/2 MAP kinase pathway, has been shown to influence the cellular sensitivity to the anticancer agent cisplatin. To further define the role of KSR1 expression on drug sensitivity, the expression of KSR1 was examined in the NCI60 anticancer drug screen, a panel of cancer cell lines representing nine tissue types, established by the Developmental Therapeutics Program (DTP) at the National Cancer Institute (NCI).
View Article and Find Full Text PDFPrevious studies from our laboratory have shown that the activation of G(2)-M checkpoint after exposure of MCF-7 breast cancer cells to gamma-irradiation (IR) is dependent on the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. Studies presented in this report indicate that IR exposure of MCF-7 cells is associated with a marked increase in expression of breast cancer 1 (BRCA1) tumor suppressor, an effect that requires ERK1/2 activation and involves posttranscriptional control mechanisms. Furthermore, reciprocal coimmunoprecipitation, as well as colocalization studies, indicate an interaction between BRCA1 and ERK1/2 in both nonirradiated and irradiated cells.
View Article and Find Full Text PDFIntroduction: Cancer is a leading cause of death in Americans. We have identified an inducible cancer avoidance mechanism in cells that reduces mutation rate, reduces and delays carcinogenesis after carcinogen exposure, and induces apoptosis and/or senescence of already transformed cells by simultaneously activating multiple overlapping and redundant DNA damage response pathways.
Methods: The human breast carcinoma cell line MCF-7, the adriamycin-resistant MCF-7 (Adr/MCF-7) cell line, as well as normal human mammary epithelial (NME) cells were treated with DNA oligonucleotides homologous to the telomere 3' overhang (T-oligos).
HER4 expression in human breast cancers correlates with a positive prognosis. While heregulin inhibits the growth of HER4-positive breast cancer cells, it does so by undefined mechanisms. We demonstrate that heregulin-induced HER4 activity inhibits cell proliferation and delays G(2)/M progression of breast cancer cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2006
The identification of neural stem cells with retinal potential in the ciliary epithelium (CE) of the adult mammals is of considerable interest because of their potential for replacing or rescuing degenerating retinal neurons in disease or injury. The evaluation of such a potential requires characterization of these cells with regard to their phenotypic properties, potential, and regulatory mechanisms. Here, we demonstrate that rat CE stem cells/progenitors in neurosphere culture display astrocytic nature in terms of expressing glial intermediate neurofilament protein, GFAP.
View Article and Find Full Text PDF