The actin cytoskeleton is a key cellular structure subverted by pathogens to infect and survive in or on host cells. Several pathogenic strains of Escherichia coli, such as enteropathogenic E. coli (EPEC) and enterohemorrhagic E.
View Article and Find Full Text PDFThe actin cytoskeleton is essential for many functions of eukaryotic cells, but the factors that nucleate actin assembly are not well understood at the organismal level or in the context of disease. To explore the function of the actin nucleation factor WHAMM in mice, we examined how inactivation impacts kidney physiology and cellular proteostasis. We show that male WHAMM knockout mice excrete elevated levels of albumin, glucose, phosphate, and amino acids, and display structural abnormalities of the kidney proximal tubule, suggesting that WHAMM activity is important for nutrient reabsorption.
View Article and Find Full Text PDFAutophagy is an intracellular degradation process that maintains homeostasis, responds to stress, and plays key roles in the prevention of aging and disease. Autophagosome biogenesis, vesicle rocketing, and autolysosome tubulation are controlled by multiple actin nucleation factors, but the impact of actin assembly on completion of the autophagic pathway is not well understood. Here we studied autophagosome and lysosome remodeling in fibroblasts harboring an inducible knockout (iKO) of the Arp2/3 complex, an essential actin nucleator.
View Article and Find Full Text PDFThe actin cytoskeleton is essential for many functions of eukaryotic cells, but the factors that nucleate actin assembly are not well understood at the organismal level or in the context of disease. To explore the function of the actin nucleation factor WHAMM in mice, we examined how inactivation impacts kidney physiology and cellular proteostasis. We show that male WHAMM knockout mice excrete elevated levels of albumin, glucose, phosphate, and amino acids, and display abnormalities of the kidney proximal tubule, suggesting that WHAMM activity is important for nutrient reabsorption.
View Article and Find Full Text PDFThe actin cytoskeleton is a ubiquitous participant in cellular functions that maintain viability, but how it controls programmed cell death is not well understood. Here we show that in response to DNA damage, human cells form a juxtanuclear F-actin-rich territory that coordinates the organized progression of apoptosome assembly to caspase activation. This cytoskeletal compartment is created by the actin nucleation factors JMY, WHAMM, and the Arp2/3 complex, and it excludes proteins that inhibit JMY and WHAMM activity.
View Article and Find Full Text PDFThe actin cytoskeleton impacts practically every function of a eukaryotic cell. Historically, the best-characterized cytoskeletal activities are in cell morphogenesis, motility, and division. The structural and dynamic properties of the actin cytoskeleton are also crucial for establishing, maintaining, and changing the organization of membrane-bound organelles and other intracellular structures.
View Article and Find Full Text PDFThe Arp2/3 complex is an actin nucleator with well-characterized activities in cell morphogenesis and movement, but its roles in nuclear processes are relatively understudied. We investigated how the Arp2/3 complex affects genomic integrity and cell cycle progression using mouse fibroblasts containing an inducible knockout (iKO) of the ArpC2 subunit. We show that permanent Arp2/3 complex ablation results in DNA damage, the formation of cytosolic micronuclei, and cellular senescence.
View Article and Find Full Text PDFThe actin cytoskeleton is a well-known player in most vital cellular processes, but comparably little is understood about how the actin assembly machinery impacts programmed cell death pathways. In the current study, we explored roles for the human Wiskott-Aldrich Syndrome Protein (WASP) family of actin nucleation factors in DNA damage-induced apoptosis. Inactivation of each WASP-family gene revealed that two of them, JMY and WHAMM, are necessary for rapid apoptotic responses.
View Article and Find Full Text PDFMethods Mol Biol
April 2021
The bacteriophage Lambda (λ) "Red" recombination system has enabled the development of efficient methods for engineering bacterial chromosomes. This system has been particularly important to the field of bacterial pathogenesis, where it has advanced the study of virulence factors from Shiga toxin-producing and enteropathogenic Escherichia coli (STEC and EPEC). Transient plasmid-driven expression of Lambda Red allows homologous recombination between PCR-derived linear DNA substrates and target loci in the STEC/EPEC chromosomes.
View Article and Find Full Text PDFFilopodia are actin-rich protrusions important for sensing and responding to the extracellular environment, but the repertoire of factors required for filopodia formation is only partially understood. Jarsch et al. (2020.
View Article and Find Full Text PDFCell motility is governed by cooperation between the Arp2/3 complex and nucleation-promoting factors from the Wiskott-Aldrich Syndrome Protein (WASP) family, which together assemble actin filament networks to drive membrane protrusion. Here we identify WHIMP (WAVE Homology In Membrane Protrusions) as a new member of the WASP family. The Whimp gene is encoded on the X chromosome of a subset of mammals, including mice.
View Article and Find Full Text PDFEnteropathogenic and enterohemorrhagic E. coli (EPEC and EHEC) are closely related extracellular pathogens that reorganize host cell actin into "pedestals" beneath the tightly adherent bacteria. This pedestal-forming activity is both a critical step in pathogenesis, and it makes EPEC and EHEC useful models for studying the actin rearrangements that underlie membrane protrusions.
View Article and Find Full Text PDFEnteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are closely-related pathogens that attach tightly to intestinal epithelial cells, efface microvilli, and promote cytoskeletal rearrangements into protrusions called actin pedestals. To trigger pedestal formation, EPEC employs the tyrosine phosphorylated transmembrane receptor Tir, while EHEC relies on the multivalent scaffolding protein EspFU. The ability to generate these structures correlates with bacterial colonization in several animal models, but the precise function of pedestals in infection remains unclear.
View Article and Find Full Text PDFActin nucleation factors function to organize, shape, and move membrane-bound organelles, yet they remain poorly defined in relation to disease. Galloway-Mowat syndrome (GMS) is an inherited disorder characterized by microcephaly and nephrosis resulting from mutations in the gene. This core clinical phenotype appears frequently in the Amish, where virtually all affected individuals harbor homozygous founder mutations in as well as the closely linked gene, which encodes a nucleation factor.
View Article and Find Full Text PDFSmall G-proteins are key regulatory molecules that activate the actin nucleation machinery to drive cytoskeletal rearrangements during plasma membrane remodeling. However, the ability of small G-proteins to interact with nucleation factors on internal membranes to control trafficking processes has not been well characterized. Here we investigated roles for members of the Rho, Arf, and Rab G-protein families in regulating WASP homologue associated with actin, membranes, and microtubules (WHAMM), an activator of Arp2/3 complex-mediated actin nucleation.
View Article and Find Full Text PDFThe Nck adaptor protein recruits cytosolic effectors such as N-WASP that induce localized actin polymerization. Experimental aggregation of Nck SH3 domains at the membrane induces actin comet tails--dynamic, elongated filamentous actin structures similar to those that drive the movement of microbial pathogens such as vaccinia virus. Here we show that experimental manipulation of the balance between unbranched/branched nucleation altered the morphology and dynamics of Nck-induced actin comets.
View Article and Find Full Text PDFThe microtubule (MT) and actin cytoskeletons drive many essential cellular processes, yet fairly little is known about how their functions are coordinated. One factor that mediates important cross talk between these two systems is WHAMM, a Golgi-associated protein that utilizes MT binding and actin nucleation activities to promote membrane tubulation during intracellular transport. Using cryoelectron microscopy and other biophysical and biochemical approaches, we unveil the underlying mechanisms for how these activities are coordinated.
View Article and Find Full Text PDFMany bacterial pathogens reorganize the host actin cytoskeleton during the course of infection, including enterohemorrhagic Escherichia coli (EHEC), which utilizes the effector protein EspF(U) to assemble actin filaments within plasma membrane protrusions called pedestals. EspF(U) activates N-WASP, a host actin nucleation-promoting factor that is normally auto-inhibited and found in a complex with the actin-binding protein WIP. Under native conditions, this N-WASP/WIP complex is activated by the small GTPase Cdc42 in concert with several different SH3 (Src-homology-3) domain-containing proteins.
View Article and Find Full Text PDFAutophagy mediates the degradation of cytoplasmic components in eukaryotic cells and plays a key role in immunity. The mechanism of autophagosome formation is not clear. Here we examined two potential membrane sources for antibacterial autophagy: the ER and mitochondria.
View Article and Find Full Text PDFArp2/3 complex mediates the nucleation of actin filaments in multiple subcellular processes, and is activated by nucleation-promoting factors (NPFs) from the Wiskott-Aldrich Syndrome family. In exciting new developments, this family has grown by three members: WASH, WHAMM and JMY, which extend the repertoire of dynamic membrane structures that are remodeled following Arp2/3 activation in vivo. These novel NPFs share an actin- and Arp2/3-interacting WCA module, and combine Arp2/3 activation with additional biochemical functions, including capping protein inhibition, microtubule engagement or Arp2/3-independent actin nucleation, none of which had been previously associated with canonical WCA-harboring proteins.
View Article and Find Full Text PDFUpon infection of mammalian cells, enterohemorrhagic E. coli (EHEC) O157:H7 utilizes a type III secretion system to translocate the effectors Tir and EspF(U) (aka TccP) that trigger the formation of F-actin-rich 'pedestals' beneath bound bacteria. EspF(U) is localized to the plasma membrane by Tir and binds the nucleation-promoting factor N-WASP, which in turn activates the Arp2/3 actin assembly complex.
View Article and Find Full Text PDFA variety of microbes manipulate the cytoskeleton of mammalian cells to promote their internalization, motility and/or spread. Among such bacteria, enteropathogenic Escherichia coli and enterohemorrhagic Escherichia coli are closely related pathogens that adhere to human intestinal cells and reorganize the underlying actin cytoskeleton into 'pedestals'. The assembly of pedestals is likely to be an important step in colonization, and is triggered by the E.
View Article and Find Full Text PDFFor over a decade, the actin-related protein 2/3 (ARP2/3) complex, a handful of nucleation-promoting factors and formins were the only molecules known to directly nucleate actin filament formation de novo. However, the past several years have seen a surge in the discovery of mammalian proteins with roles in actin nucleation and dynamics. Newly recognized nucleation-promoting factors, such as WASP and SCAR homologue (WASH), WASP homologue associated with actin, membranes and microtubules (WHAMM), and junction-mediating regulatory protein (JMY), stimulate ARP2/3 activity at distinct cellular locations.
View Article and Find Full Text PDF