The western corn rootworm (WCR), LeConte, is considered one of the most economically important pests of maize ( L.) in the United States (U.S.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
October 2021
Diabrotica virgifera virgifera (western corn rootworm, WCR) is one of the most destructive agricultural insect pests in North America. It is highly adaptive to environmental stimuli and crop protection technologies. However, little is known about the underlying genetic basis of WCR behavior and adaptation.
View Article and Find Full Text PDFThe cotton bollworm, Helicoverpa armigera, is a major insect pest for a wide range of agricultural crops. It causes significant yield loss through feeding damage and by increasing the crop's vulnerability to bacterial and fungal infections. Although expression of Bacillus thuringiensis (Bt) toxins in transgenic crops has been very successful in protecting against insect pests, including H.
View Article and Find Full Text PDFBackground: RNA interference (RNAi) triggered by maize plants expressing RNA hairpins against specific western corn rootworm (WCR) transcripts have proven to be effective at controlling this pest. To provide robust crop protection, mRNA transcripts targeted by double-stranded RNA must be sensitive to knockdown and encode essential proteins.
Results: Using WCR adult feeding assays, we identified Sec23 as a highly lethal RNAi target.
Vegetative insecticidal proteins (Vips) from (Bt) are unique from crystal (Cry) proteins found in Bt parasporal inclusions as they are secreted during the bacterial vegetative growth phase and bind unique receptors to exert their insecticidal effects. We previously demonstrated that large modifications of the Vip3 C-terminus could redirect insecticidal spectrum but results in an unstable protein with no lethal activity. In the present work, we have generated a new Vip3 protein, Vip3Ab1-740, via modest modification of the Vip3Ab1 C-terminus.
View Article and Find Full Text PDFInsect Biochem Mol Biol
January 2019
Western corn rootworm, Diabrotica virgifera virgifera, is the major agronomically important pest of maize in the US Corn Belt. To augment the repertoire of the available dsRNA-based traits that control rootworm, we explored a potentially haplolethal gene target, wings up A (wupA), which encodes Troponin I. Troponin I, a component of the Troponin-Tropomyosin complex, is an inhibitory protein involved in muscle contraction.
View Article and Find Full Text PDFPestic Biochem Physiol
September 2018
RNA interference (RNAi) has proven effective for controlling pest insects such as western corn rootworm (WCR), Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Previous studies have shown that WCR adults display a robust RNAi response to orally-administered double-stranded RNA (dsRNA). However, it is unclear how quickly the response occurs after ingestion or how long RNAi effect lasts after WCR stop ingesting diet containing dsRNA.
View Article and Find Full Text PDFThe cellular uptake of dsRNA after dietary exposure is critical for RNAi efficiency; however, the mechanism of its uptake in many insects remains to be understood. In this study, we evaluated the roles of the endocytic pathway genes Clathrin heavy chain (Chc), Clathrin adaptor protein AP50, ADP ribosylation factor-like 1 (Arf72A), Vacuolar H+ ATPase 16 kDa subunit (Vha16), and small GTPase Rab7 and putative sid-1-like genes (silA and silC) in RNAi response in western corn rootworm (WCR) using a two-stage dsRNA exposure bioassay. Silencing of Chc, Vha16, and AP50 led to a significant decrease in the effects of laccase2 dsRNA reporter, indicating that these genes are involved in RNAi response.
View Article and Find Full Text PDFThe use of transgenic crops that induce silencing of essential genes using double-stranded RNA (dsRNA) through RNA interference (RNAi) in western corn rootworm, Diabrotica virgifera virgifera, is likely to be an important component of new technologies for the control of this important corn pest. Previous studies have demonstrated that the dsRNA response in D. v.
View Article and Find Full Text PDFRNAi shows potential as an agricultural technology for insect control, yet, a relatively low number of robust lethal RNAi targets have been demonstrated to control insects of agricultural interest. In the current study, a selection of lethal RNAi target genes from the iBeetle (Tribolium castaneum) screen were used to demonstrate efficacy of orthologous targets in the economically important coleopteran pests Diabrotica virgifera virgifera and Meligethes aeneus. Transcript orthologs of 50 selected genes were analyzed in D.
View Article and Find Full Text PDFRNA interference (RNAi) was discovered almost 20 years ago and has been exploited worldwide to silence genes in plants and animals. A decade later, it was found that transforming plants with an RNAi construct targeting an insect gene could protect the plant against feeding by that insect. Production of double-stranded RNA (dsRNA) in a plant to affect the viability of a herbivorous animal is termed trans-kingdom RNAi (TK-RNAi).
View Article and Find Full Text PDFRNA interference (RNAi) based approaches can potentially be used to control insect pests. These approaches may depend on the usage of microRNA (miRNA) or double stranded RNA (dsRNA) mediated gene knockdown, which likely involves proteins that regulate these pathways, such as Argonaute 1 (Ago1), Argonaute 2 (Ago2), Dicer 1 (Dcr1), Dicer 2 (Dcr2), and Drosha in insects. We previously performed functional characterization of Ago2 and Dcr2 of western corn rootworm (WCR), Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) and observed that knockdown of Ago2 and Dcr2 ameliorated the lethal effect induced by the dsRNA-mediated knockdown of an essential gene in WCR, thereby confirming the involvement of Ago2 and Dcr2 in the dsRNA pathway.
View Article and Find Full Text PDFIn this work, we characterized 2 novel insecticidal proteins; Vip3Ab1 and Vip3Bc1. These proteins display unique insecticidal spectra and have differential rates of processing by lepidopteran digestive enzymes. Furthermore, we have found that both proteins exist as tetramers in their native state before and after proteolysis.
View Article and Find Full Text PDFWestern corn rootworm (WCR, LeConte) is a major corn pest in the United States, causing annual losses of over $1 billion. One approach to protect against crop loss by this insect is the use of transgenic corn hybrids expressing one or more crystal (Cry) proteins derived from . Cry34Ab1 and Cry35Ab1 together comprise a binary insecticidal toxin with specific activity against WCR.
View Article and Find Full Text PDF(velvetbean caterpillar) and (soybean looper, formerly named ) are two important defoliating insects of soybeans. Both lepidopteran pests are controlled mainly with synthetic insecticides. Alternative control strategies, such as biopesticides based on the (Bt) toxins or transgenic plants expressing Bt toxins, can be used and are increasingly being adopted.
View Article and Find Full Text PDFParental RNAi (pRNAi) is an RNA interference response where the gene knockdown phenotype is observed in the progeny of the treated organism. pRNAi has been demonstrated in female western corn rootworms (WCR) via diet applications and has been described as a potential approach for rootworm pest management. However, it is not clear if plant-expressed pRNAi can provide effective control of next generation WCR larvae in the field.
View Article and Find Full Text PDFExpressing double-stranded RNA (dsRNA) in transgenic plants to silence essential genes within herbivorous pests is referred to as -kingdom RNA interference (TK-RNAi) and has emerged as a promising strategy for crop protection. However, the dicing of dsRNA into siRNAs by the plant's intrinsic RNAi machinery may reduce this pesticidal activity. Therefore, genetic constructs, encoding ∼200 nt duplex-stemmed-hairpin (hp) RNAs, targeting the acetylcholinesterase gene of the cotton bollworm, , were integrated into either the nuclear or the chloroplast genome of Undiced, full-length hpRNAs accumulated in transplastomic lines of and conferred strong protection against herbivory while the hpRNAs of nuclear-transformed plants were processed into siRNAs and gave more modest anti-feeding activity.
View Article and Find Full Text PDFBackground: The Cry6 family of proteins from Bacillus thuringiensis represents a group of powerful toxins with great potential for use in the control of coleopteran insects and of nematode parasites of importance to agriculture. These proteins are unrelated to other insecticidal toxins at the level of their primary sequences and the structure and function of these proteins has been poorly studied to date. This has inhibited our understanding of these toxins and their mode of action, along with our ability to manipulate the proteins to alter their activity to our advantage.
View Article and Find Full Text PDFWestern corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) is highly sensitive to orally delivered double-stranded RNA (dsRNA). RNAi in WCR is systemic and spreads throughout the insect body. This raises the question whether transitive RNAi is a mechanism that functions in WCR to amplify the RNAi response via production of secondary siRNA.
View Article and Find Full Text PDFJ Invertebr Pathol
January 2017
Insecticidal proteins developed for in-plant protection against crop pests undergo extensive safety testing during the product development process. Safety considerations for insecticidal proteins expressed in crops follow recommended, science-based guidelines and specific studies are conducted on a case by case basis. Corn events expressing Bacillus thuringiensis (Bt) Cry34Ab1 and Cry35Ab1 were developed to protect maize from Diabrotica virgifera virgifera (western corn rootworm) feeding damage.
View Article and Find Full Text PDFRNA interference (RNAi) is being developed as a potential tool for insect pest management. Increased understanding of the RNAi pathway in target insect pests will provide information to use this technology effectively and to inform decisions related to resistant management strategies for RNAi based traits. Dicer 2 (Dcr2), an endonuclease responsible for formation of small interfering RNA's and Argonaute 2 (Ago2), an essential catalytic component of the RNA-induced silencing complex (RISC) have both been associated with the RNAi pathway in a number of different insect species including the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae).
View Article and Find Full Text PDFRNA interference (RNAi) has become a widely used reverse genetic tool to study gene function in eukaryotic organisms and is being developed as a technology for insect pest management. The efficiency of RNAi varies among organisms. Insects from different orders also display differential efficiency of RNAi, ranging from highly efficient (coleopterans) to very low efficient (lepidopterans).
View Article and Find Full Text PDF