Publications by authors named "Kenneth E Lee"

Designing the next generation of high-resolution displays requires high pixel density per area and small pixel sizes without compromising the optical quality. Quantum dots (QDs) have been demonstrated as a promising material system for down-conversion of blue emission as they provide pure colors on the wide color gamut. However, for high color-conversion efficiency, the required QD film thickness has not been compatible with small pixel sizes.

View Article and Find Full Text PDF

Active triangulation range finders are widely used in a variety of applications such as robotics and assistive technologies. The power of the laser source should be carefully selected in order to satisfy detectability and still remain eye-safe. In this paper, we present a systematic approach to assess the detectability of an active triangulation range finder in an outdoor environment.

View Article and Find Full Text PDF

Microscopic density matrix analysis on the linewidth enhancement factor (LEF) of both mid-infrared (mid-IR) and Terahertz (THz) quantum cascade lasers (QCLs) is reported, taking into account of the many body Coulomb interactions, coherence of resonant-tunneling transport and non-parabolicity. A non-zero LEF at the gain peak is obtained due to these combined microscopic effects. The results show that, for mid-IR QCLs, the many body Coulomb interaction and non-parabolicity contribute greatly to the non-zero LEF.

View Article and Find Full Text PDF

An optoelectronic oscillator (OEO) with wideband frequency tunability and stable output based on a bandpass microwave photonic filter (MPF) has been proposed and experimentally demonstrated. Realized by cascading a finite impulse response (FIR) filter and an infinite impulse response (IIR) filter together, the tunable bandpass MPF successfully replaces the narrowband electrical bandpass filter in a conventional single-loop OEO and serves as the oscillating frequency selector. The FIR filter is based on a tunable multi-wavelength laser and dispersion compensation fiber (DCF) while the IIR filter is simply based on an optical loop.

View Article and Find Full Text PDF

A method to generate time- and wavelength-interleaved optical pulse trains based on dispersion spreading and sectional compression is proposed and demonstrated. A 4×2  GHz time- and wavelength-interleaved pulse train is generated from an input 2 GHz mode-locked pulse train. The advantages of the proposed scheme are its simplicity and robustness, since no microwave component or multiwavelength laser source is required.

View Article and Find Full Text PDF

We characterize the noise conversion from the pump relative intensity noise (RIN) to the RIN and phase noise of passively mode-locked lasers at 1.5 μm. Two mode locking mechanisms, nonlinear polarization rotation (NPR) and semiconductor saturable absorber mirror (SESAM), are compared for noise conversion for the first time.

View Article and Find Full Text PDF

We investigate the relationship between timing jitter and cavity loss of a passively mode-locked fiber ring laser with a carbon nanotube as a saturable absorber. It is the first time that we experimentally demonstrated the reduction of timing jitter by properly increasing laser cavity loss. The lowest timing jitter is achieved when the cavity loss is optimized.

View Article and Find Full Text PDF