CITE-seq enables paired measurement of surface protein and mRNA expression in single cells using antibodies conjugated to oligonucleotide tags. Due to the high copy number of surface protein molecules, sequencing antibody-derived tags (ADTs) allows for robust protein detection, improving cell-type identification. However, variability in antibody staining leads to batch effects in the ADT expression, obscuring biological variation, reducing interpretability, and obstructing cross-study analyses.
View Article and Find Full Text PDFFront Cell Infect Microbiol
April 2024
Kinetoplastid pathogens including , , and species, are early diverged, eukaryotic, unicellular parasites. Functional understanding of many proteins from these pathogens has been hampered by limited sequence homology to proteins from other model organisms. Here we describe the development of a high-throughput deep mutational scanning approach in that facilitates rapid and unbiased assessment of the impacts of many possible amino acid substitutions within a protein on cell fitness, as measured by relative cell growth.
View Article and Find Full Text PDFThe gRNA directed U-insertion and deletion editing of mitochondrial mRNAs that is essential in different life-cycle stages for the protozoan parasite is performed by three similar multiprotein catalytic complexes (CCs) that contain the requisite enzymes. These CCs also contain a common set of eight proteins that have no apparent direct catalytic function, including six that have an OB-fold domain. We show here that one of these OB-fold proteins, KREPA3 (A3), has structural homology to other editing proteins, is essential for editing, and is multifunctional.
View Article and Find Full Text PDFUnderstanding immune mechanisms that mediate malaria protection is critical for improving vaccine development. Vaccination with radiation-attenuated Plasmodium falciparum sporozoites (PfRAS) induces high level of sterilizing immunity against malaria and serves as a valuable tool for the study of protective mechanisms. To identify vaccine-induced and protection-associated responses during malarial infection, we performed transcriptome profiling of whole blood and in-depth cellular profiling of PBMCs from volunteers who received either PfRAS or noninfectious mosquito bites, followed by controlled human malaria infection (CHMI) challenge.
View Article and Find Full Text PDFThe gRNA directed U-insertion and deletion editing of mitochondrial mRNAs that is essential in different life cycle stages for the protozoan parasite is performed by three similar multi-protein catalytic complexes (CCs) that contain the requisite enzymes. These CCs also contain a common set of eight proteins that have no apparent direct catalytic function, including six that have an OB-fold domain. We show here that one of these OB-fold proteins, KREPA3 (A3), has structural homology to other editing proteins, is essential for editing and is multifunctional.
View Article and Find Full Text PDFThis study tested if prior BCG revaccination can further boost immune responses subsequently induced by a widely distributed and otherwise efficacious Oxford/AstraZeneca ChAdOx1nCoV-19 vaccine, referred to as COVISHIELD, in India. We compared COVISHIELD induced longitudinal immune responses in 21 BCG re-vaccinees (BCG-RV) and 13 BCG-non-revaccinees (BCG-NRV), all of whom were BCG vaccinated at birth and latent tuberculosis negative, after COVISHIELD prime and boost with baseline samples that were collected pre-pandemic and pre-BCG revaccination. Compared to BCG-NRV, BCG-RV displayed significantly higher magnitude of spike-specific Ab and T cell responses, including a greater proportion of high responders; better quality polyfunctional CD4 and CD8 T cells that persisted and a more robust Ab and T cell response to the Delta mutant of SARS-CoV-2 highlighting greater breadth.
View Article and Find Full Text PDFImmunization with radiation-attenuated sporozoites (RAS) can confer sterilizing protection against malaria, although the mechanisms behind this protection are incompletely understood. We performed a systems biology analysis of samples from the Immunization by Mosquito with Radiation Attenuated Sporozoites (IMRAS) trial, which comprised P. falciparum RAS-immunized (PfRAS), malaria-naive participants whose protection from malaria infection was subsequently assessed by controlled human malaria infection (CHMI).
View Article and Find Full Text PDFIdentifying preimmunization biological characteristics that promote an effective vaccine response offers opportunities for illuminating the critical immunological mechanisms that confer vaccine-induced protection, for developing adjuvant strategies, and for tailoring vaccination regimens to individuals or groups. In the context of malaria vaccine research, studying preimmunization correlates of protection can help address the need for a widely effective malaria vaccine, which remains elusive. In this study, common preimmunization correlates of protection were identified using transcriptomic data from four independent, heterogeneous malaria vaccine trials in adults.
View Article and Find Full Text PDFThis 27-color flow cytometry panel was developed in order to assess immunological changes over the course of an immunization and challenge regimen in two experimental malaria vaccine trials. The aim of the study was to find correlates of vaccine-induced protection. Several studies have indicated that protection against malaria appears to involve immune responses at various immunological sites, with liver-resident responses playing an essential role.
View Article and Find Full Text PDFBACKGROUNDBacille Calmette-Guérin (BCG) vaccine is protective against Tuberculosis (TB) in children, but its efficacy wanes with age. Consequently, determining if BCG revaccination augments anti-TB immunity in young adults in TB endemic regions is vital.METHODSTwo hundred healthy adults, BCG vaccinated at birth, were tested for their IFN-γ release assay (IGRA) status.
View Article and Find Full Text PDFAnimal model studies highlight the role of innate-like lymphocyte populations in the early inflammatory response and subsequent parasite control following infection. IFN-γ production by these lymphocytes likely plays a key role in the early control of the parasite and disease severity. Analyzing human innate-like T cell and NK cell responses following infection with has been challenging because the early stages of infection are clinically silent.
View Article and Find Full Text PDFMalaria parasites use hemoglobin (Hb) as a major nutrient source in the intraerythrocytic stage, during which heme is converted to hemozoin (Hz). The formation of Hz is essential for parasite survival, but to date, the underlying mechanisms of Hb degradation and Hz formation are poorly understood. We report the presence of a ∼200-kDa protein complex in the food vacuole that is required for Hb degradation and Hz formation.
View Article and Find Full Text PDFLeishmania donovani is a protozoan parasite that causes visceral leishmaniasis (VL) and is responsible for significant mortality and morbidity. Increasing resistance towards antimonial drugs poses a great challenge in chemotherapy of VL. Paromomycin is an aminoglycosidic antibiotic and is one of the drugs currently being used in the chemotherapy of cutaneous and visceral leishmaniasis.
View Article and Find Full Text PDFThe mitochondrial respiratory chain is comprised of four different protein complexes (I-IV), which are responsible for electron transport and generation of proton gradient in the mitochondrial intermembrane space. This proton gradient is then used by F₀F₁-ATP synthase (complex V) to produce ATP by oxidative phosphorylation. In this study, the respiratory complexes I, II, and III were affinity purified from Trypanosoma brucei procyclic form cells and their composition was determined by mass spectrometry.
View Article and Find Full Text PDFRecent years have seen an explosion in the availability of protozoan pathogen genome sequences. Although data regarding the underlying genome sequence remain relatively stable after the initial draft, understanding of specific gene function is increasing rapidly. This dichotomy is reflected in the relative stability of systematic gene identifiers (SysIDs(*)) in genome sequence databases, as compared to evolving and/or conflicting gene and gene product names.
View Article and Find Full Text PDFFe/S clusters are part of the active site of many enzymes and are essential for cell viability. In eukaryotes the cysteine desulfurase Nfs (IscS) donates the sulfur during Fe/S cluster assembly and was thought sufficient for this reaction. Moreover, Nfs is indispensable for tRNA thiolation, a modification generally required for tRNA function and protein synthesis.
View Article and Find Full Text PDFMost mitochondrial mRNAs in trypanosomes undergo uridine insertion/deletion editing that is catalyzed by approximately 20S editosomes. The editosome component KREPA3 is essential for editosome structural integrity and its two zinc finger (ZF) motifs are essential for editing in vivo but not in vitro. KREPA3 function was further explored by examining the consequence of mutation of its N- and C-terminal ZFs (ZF1 and ZF2, respectively).
View Article and Find Full Text PDFMitochondrial mRNA editing in trypanosomatid parasites involves several multiprotein assemblies, including three very similar complexes that contain the key enzymatic editing activities and sediment at ~20S on glycerol gradients. These ~20S editosomes have a common set of 12 proteins, including enzymes for uridylyl (U) removal and addition, 2 RNA ligases, 2 proteins with RNase III-like domains, and 6 proteins with predicted oligonucleotide binding (OB) folds. In addition, each of the 3 distinct ~20S editosomes contains a different RNase III-type endonuclease, 1 of 3 related proteins and, in one case, an additional exonuclease.
View Article and Find Full Text PDFNfs-like proteins have cysteine desulfurase (CysD) activity, which removes sulfur (S) from cysteine, and provides S for iron-sulfur cluster assembly and the thiolation of tRNAs. These proteins also have selenocysteine lyase activity in vitro, and cleave selenocysteine into alanine and elemental selenium (Se). It was shown previously that the Nfs-like protein called Nfs from the parasitic protist Trypanosoma brucei is a genuine CysD.
View Article and Find Full Text PDFMitochondria consist of four compartments, outer membrane, intermembrane space, inner membrane, and matrix; each harboring specific functions and structures. In this study, we used LC-MS/MS to characterize the protein composition of Trypanosoma brucei mitochondrial (mt) membranes, which were enriched by different biochemical fractionation techniques. The analyses identified 202 proteins that contain one or more transmembrane domain(s) and/or positive GRAVY scores.
View Article and Find Full Text PDFThe mitochondrial F(0)F(1) ATP synthase is an essential multi-subunit protein complex in the vast majority of eukaryotes but little is known about its composition and role in Trypanosoma brucei, an early diverged eukaryotic pathogen. We purified the F(0)F(1) ATP synthase by a combination of affinity purification, immunoprecipitation and blue-native gel electrophoresis and characterized its composition and function. We identified 22 proteins of which five are related to F(1) subunits, three to F(0) subunits, and 14 which have no obvious homology to proteins outside the kinetoplastids.
View Article and Find Full Text PDFThe composition of the large, single, mitochondrion (mt) of Trypanosoma brucei was characterized by MS (2-D LC-MS/MS and gel-LC-MS/MS) analyses. A total of 2897 proteins representing a substantial proportion of procyclic form cellular proteome were identified, which confirmed the validity of the vast majority of gene predictions. The data also showed that the genes annotated as hypothetical (species specific) were overpredicted and that virtually all genes annotated as hypothetical, unlikely are not expressed.
View Article and Find Full Text PDFMitochondrial (mt) gene expression in Trypanosoma brucei entails multiple types of RNA processing, including polycistronic transcript cleavage, mRNA editing, gRNA oligouridylation, and mRNA polyadenylation, which are catalyzed by various multiprotein complexes. We examined the novel mitochondrial RNA-binding 1 (MRB1) complex that has 16 associated proteins, four of which have motifs suggesting RNA interaction. RNase treatment or the lack of kDNA in mutants resulted in lower MRB1 complex sedimentation in gradients, indicating that MRB1 complex associates with kDNA transcripts.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2008
Trypanosomatid RNA editing is a unique process and essential for these organisms. It therefore represents a drug target for a group of protozoa that includes the causative agents for African sleeping sickness and other devastating tropical and subtropical diseases. Here, we present drug-like inhibitors of a key enzyme in the editing machinery, RNA-editing ligase 1 (REL1).
View Article and Find Full Text PDF