Publications by authors named "Kenneth Catania"

Article Synopsis
  • The emerald jewel wasp (Ampulex compressa) lays its egg on an American cockroach (Periplaneta americana) after envenomating it, leading to a unique reproductive strategy where the larva feeds on the host's organs.
  • A study showed that juvenile cockroaches preyed on parasitized hosts, significantly reducing larval survival, especially in the early stages of development, but survival rates increased dramatically after day 10.
  • The findings indicate that the cocoon provides crucial protection against predators, suggesting a possible evolutionary adaptation in the feeding behavior of jewel wasp larvae to ensure their survival and development.
View Article and Find Full Text PDF

In the 1880s, Henri Fabre was captivated by the "special art of eating", whereby a parasitoid wasp larva fed selectively on host internal organs, avoiding the heart (dorsal vessel) and tracheal system (respiratory system) to preserve life. In Fabre's words: "The ruling feature in this scientific method of eating, which proceeds from parts less to the parts more necessary to preserve a remnant of life, is none the less obvious". Subsequent investigators have reported the same for many parasitoid wasps, including for the emerald jewel wasp (Ampulex compressa).

View Article and Find Full Text PDF
Tentacled snakes.

Curr Biol

September 2022

Catania provides an introduction to tentacled snakes and their ingenious ability to capture fish.

View Article and Find Full Text PDF

In this paper, I draw an analogy between the use of electricity by electric eels () to paralyze prey muscles and the use of venoms that paralyze prey by disrupting the neuromuscular junction. The eel's strategy depends on the recently discovered ability of eels to activate prey motor neuron efferents with high-voltage pulses. Usually, eels use high voltage to cause brief, whole-body tetanus, thus preventing escape while swallowing prey whole.

View Article and Find Full Text PDF

The parasitoid emerald jewel wasp (Ampulex compressa) subdues the American cockroach (Periplaneta americana) with a sting to the 1st thoracic ganglion, followed by a sting to the roach's brain, causing long-term pacification. The wasp then leads the cockroach to a hole where it lays an egg on the roach middle leg before barricading the entrance and departing. Although many aspects of the wasp's initial attack have been investigated, few studies have detailed the egg-laying process and the subsequent fate of the larvae.

View Article and Find Full Text PDF
Article Synopsis
  • - The stratum corneum is the outer layer of skin that protects against water loss and pathogens, and the study focuses on the unique adaptations of the hairless naked mole rat (NMR) living in dry, underground habitats in Africa.
  • - Skin samples from both adult and neonate NMRs were analyzed using advanced microscopy techniques to compare their skin barrier function to that of hairless mice, revealing key differences in structure and lipid organization.
  • - The NMRs exhibited a thicker stratum corneum and other structural adaptations but showed increased transepidermal water loss and reduced hydration in dry conditions, indicating their skin barrier might not be fully effective in low humidity, potentially threatening their health.
View Article and Find Full Text PDF

The remarkable physiology of the electric eel () made it one of the first model species in science. It was pivotal for understanding animal electricity in the 1700s, was investigated by Humboldt and Faraday in the 1800s, was leveraged to isolate the acetylcholine receptor in the 20th century, and has inspired the design of new power sources and provided insights to electric organ evolution in the 21st century. And yet few studies have investigated the electric eel's behavior.

View Article and Find Full Text PDF

Here I review, compare, and contrast the neurobiology and behavior of the common, eastern mole (Scalopus aquaticus) and the star-nosed mole (Condylura cristata). These two species are part of the same family (Talpidae) and have similar body size and general morphology. But they differ in sensory specializations, complexity of neocortical organization, and behavior.

View Article and Find Full Text PDF

The emerald jewel wasp (Ampulex compressa) is renowned for its ability to zombify the American cockroach (Periplaneta americana) with a sting to the brain. When the venom takes effect, the cockroach becomes passive and can be led by its antenna into a hole, where the wasp deposits an egg and then seals the exit with debris. The cockroach has the ability to walk, run, or fly if properly stimulated, but it does not try to escape as it is slowly eaten alive by the developing wasp larva.

View Article and Find Full Text PDF

Electric eels have been the subject of investigation and curiosity for centuries [1]. They use high voltage to track [2] and control [3] prey, as well as to exhaust prey by causing involuntary fatigue through remote activation of prey muscles [4]. But their most astonishing behavior is the leaping attack, during which eels emerge from the water to directly electrify a threat [5, 6].

View Article and Find Full Text PDF

When approached by a large, partially submerged conductor, electric eels (Electrophorus electricus) will often defend themselves by leaping from the water to directly shock the threat. Presumably, the conductor is interpreted as an approaching terrestrial or semiaquatic animal. In the course of this defensive behavior, eels first make direct contact with their lower jaw and then rapidly emerge from the water, ascending the conductor while discharging high-voltage volleys.

View Article and Find Full Text PDF
Behavioral pieces of neuroethological puzzles.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

September 2017

In this review, I give a first-person account of surprising insights that have come from the behavioral dimension of neuroethological studies in my laboratory. These studies include the early attempts to understand the function of the nose in star-nosed moles and to explore its representation in the neocortex. This led to the discovery of a somatosensory fovea that parallels the visual fovea of primates in several ways.

View Article and Find Full Text PDF

The penile and clitoral anatomy of four species of Talpid moles (broad-footed, star-nosed, hairy-tailed, and Japanese shrew moles) were investigated to define penile and clitoral anatomy and to examine the relationship of the clitoral anatomy with the presence or absence of ovotestes. The ovotestis contains ovarian tissue and glandular tissue resembling fetal testicular tissue and can produce androgens. The ovotestis is present in star-nosed and hairy-tailed moles, but not in broad-footed and Japanese shrew moles.

View Article and Find Full Text PDF

In March 1800, Alexander von Humboldt observed the extraordinary spectacle of native fisherman collecting electric eels (Electrophorus electricus) by "fishing with horses" [von Humboldt A (1807) Ann Phys 25:34-43]. The strategy was to herd horses into a pool containing electric eels, provoking the eels to attack by pressing themselves against the horses while discharging. Once the eels were exhausted, they could be safely collected.

View Article and Find Full Text PDF

Quantifying somatosensory receptor distribution in glabrous skin is usually difficult because of the diversity of skin receptor subtypes and their location within the dermis and epidermis. However, the glabrous noses of moles are an exception. In most species of moles, the skin on the nose is covered with domed mechanosensory units known as an Eimer's organs.

View Article and Find Full Text PDF

Nature is replete with predator venoms that immobilize prey by targeting ion channels. Electric eels (Electrophorus electricus) take a different tactic to accomplish the same end. Striking eels emit electricity in volleys of 1 ms, high-voltage pulses.

View Article and Find Full Text PDF

Electric eels (Electrophorus electricus) are legendary for their ability to incapacitate fish, humans, and horses with hundreds of volts of electricity. The function of this output as a weapon has been obvious for centuries but its potential role for electroreception has been overlooked. Here it is shown that electric eels use high-voltage simultaneously as a weapon and for precise and rapid electrolocation of fast-moving prey and conductors.

View Article and Find Full Text PDF

Comparative studies amongst extant species are one of the pillars of evolutionary neurobiology. In the 20th century, most comparative studies remained restricted to analyses of brain structure volume and surface areas, besides estimates of neuronal density largely limited to the cerebral cortex. Over the last 10 years, we have amassed data on the numbers of neurons and other cells that compose the entirety of the brain (subdivided into cerebral cortex, cerebellum, and rest of brain) of 39 mammalian species spread over 6 clades, as well as their densities.

View Article and Find Full Text PDF

Despite centuries of interest in electric eels, few studies have investigated the mechanism of the eel's attack. Here, I review and extend recent findings that show eel electric high-voltage discharges activate prey motor neuron efferents. This mechanism allows electric eels to remotely control their targets using two different strategies.

View Article and Find Full Text PDF

Electric eels can incapacitate prey with an electric discharge, but the mechanism of the eel's attack is unknown. Through a series of experiments, I show that eel high-voltage discharges can activate prey motor neurons, and hence muscles, allowing eels to remotely control their target. Eels prevent escape in free-swimming prey using high-frequency volleys to induce immobilizing whole-body muscle contraction (tetanus).

View Article and Find Full Text PDF

The adult mammalian cerebellum is histologically uniform. However, concealed beneath the simple laminar architecture, it is organized rostrocaudally and mediolaterally into complex arrays of transverse zones and parasagittal stripes that is both highly reproducible between individuals and generally conserved across mammals and birds. Beyond this conservation, the general architecture appears to be adapted to the animal's way of life.

View Article and Find Full Text PDF

We investigated the relationship between body size, brain size, and fibers in selected cranial nerves in shrews and moles. Species include tiny masked shrews (S. cinereus) weighing only a few grams and much larger mole species weighing up to 90 grams.

View Article and Find Full Text PDF