Publications by authors named "Kenneth C Holmes"

Structural biology has experienced several transformative technological advances in recent years. These include: development of extremely bright X-ray sources (microfocus synchrotron beamlines and free electron lasers) and the use of electrons to extend protein crystallography to ever decreasing crystal sizes; and an increase in the resolution attainable by cryo-electron microscopy. Here we discuss the use of these techniques in general terms and highlight their application for biological filament systems, an area that is severely underrepresented in atomic resolution structures.

View Article and Find Full Text PDF

We propose that on binding to actin at the start of the power stroke the myosin cross-bridge takes on the rigor configuration at the actin interface. Starting from the prepower stroke state, this can be achieved by a small movement (16° rotation) of the lower 50K domain without twisting the central β-sheet or opening switch-1 or switch-2. The movement of the lower 50K domain puts a strain on the W-helix.

View Article and Find Full Text PDF

Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry.

View Article and Find Full Text PDF

Actin is the most abundant protein in most eukaryotic cells. It is highly conserved and participates in more protein-protein interactions than any known protein. These properties, along with its ability to transition between monomeric (G-actin) and filamentous (F-actin) states under the control of nucleotide hydrolysis, ions, and a large number of actin-binding proteins, make actin a critical player in many cellular functions, ranging from cell motility and the maintenance of cell shape and polarity to the regulation of transcription.

View Article and Find Full Text PDF

In order to understand the mechanism of muscle contraction at the atomic level, it is necessary to understand how myosin binds to actin in a reversible way. We have used a novel molecular dynamics technique constrained by an EM map of the actin-myosin complex at 13-A resolution to obtain an atomic model of the strong-binding (rigor) actin-myosin interface. The constraining force resulting from the EM map during the molecular dynamics simulation was sufficient to convert the myosin head from the initial weak-binding state to the strong-binding (rigor) state.

View Article and Find Full Text PDF

In 1955 Ken Holmes started working on tobacco mosaic virus (TMV) as a research student with Rosalind Franklin at Birkbeck College, London. Afterward he spent 18months as a post doc with Don Caspar and Carolyn Cohen at the Children's Hospital, Boston where he continued the work on TMV and also showed that the core of the thick filament of byssus retractor muscle from mussels is made of two-stranded alpha-helical coiled-coils. Returning to England he joined Aaron Klug's group at the newly founded Laboratory of Molecular Biology in Cambridge.

View Article and Find Full Text PDF

Complementarity between the tropomyosin supercoil and the helical contour of actin-filaments is required for the binding interaction of actin and tropomyosin (Li et al., 2010). Clusters of small alanine residues in place of canonical leucines along coiled-coil tropomyosin may be responsible for pre-shaping tropomyosin and promoting conformational complementarity to F-actin.

View Article and Find Full Text PDF

Wrapped superhelically around actin filaments, the coiled-coil alpha-helices of tropomyosin regulate muscle contraction by cooperatively blocking or exposing myosin-binding sites on actin. In non-muscle cells, tropomyosin additionally controls access of actin-binding proteins involved in cytoskeletal actin filament maintenance and remodeling. Tropomyosin's global shape and flexibility play a key role in the assembly, maintenance, and regulatory switching of thin filaments yet remain insufficiently characterized.

View Article and Find Full Text PDF

We argue that the overall behavior of tropomyosin on F-actin cannot be easily discerned by examining thin filaments reduced to their smallest interacting units. In isolation, the individual interactions of actin and tropomyosin, by themselves, are too weak to account for the specificity of the system. Instead the association of tropomyosin on actin can only be fully explained after considering the concerted action of the entire acto-tropomyosin system.

View Article and Find Full Text PDF

The regulation of striated muscle contraction involves changes in the interactions of troponin and tropomyosin with actin thin filaments. In resting muscle, myosin-binding sites on actin are thought to be blocked by the coiled-coil protein tropomyosin. During muscle activation, Ca2+ binding to troponin alters the tropomyosin position on actin, resulting in cyclic actin-myosin interactions that accompany muscle contraction.

View Article and Find Full Text PDF

The myosin cross-bridge has two essential properties: to undergo the "power stroke" and to bind and release from actin - both under control of ATP binding and hydrolysis. In the absence of ATP the cross-bridge binds to actin with high affinity: the binding of ATP causes rapid release of the cross-bridge from actin. The actin binding-site is split by a deep cleft that closes on strong binding to actin.

View Article and Find Full Text PDF

The power stroke pulling myosin along actin filaments during muscle contraction is achieved by a large rotation ( approximately 60 degrees ) of the myosin lever arm after ATP hydrolysis. Upon binding the next ATP, myosin dissociates from actin, but its ATPase site is still partially open and catalytically off. Myosin must then close and activate its ATPase site while returning the lever arm for the next power stroke.

View Article and Find Full Text PDF

Muscle contraction involves the cyclic interaction of the myosin cross-bridges with the actin filament, which is coupled to steps in the hydrolysis of ATP. While bound to actin each cross-bridge undergoes a conformational change, often referred to as the "power stroke", which moves the actin filament past the myosin filaments; this is associated with the release of the products of ATP hydrolysis and a stronger binding of myosin to actin. The association of a new ATP molecule weakens the binding again, and the attached cross-bridge rapidly dissociates from actin.

View Article and Find Full Text PDF