The NFκB and MAPK signaling pathways are critical components of innate immunity that orchestrate appropriate immune responses to control and eradicate pathogens. Their activation results in the induction of proinflammatory mediators, such as TNFα a potent bioactive molecule commonly secreted by recruited inflammatory cells, allowing for paracrine signaling at the site of an infection. In this study we identified a novel mechanism by which the opportunistic pathogen Porphyromonas gingivalis dampens innate immune responses by disruption of kinase signaling and degradation of inflammatory mediators.
View Article and Find Full Text PDFActivation of the immune response is a tightly regulated, coordinated effort that functions to control and eradicate exogenous microorganisms, while also responding to endogenous ligands. Determining the proper balance of inflammation is essential, as chronic inflammation leads to a wide array of host pathologies. Bacterial pathogens can instigate chronic inflammation via an extensive repertoire of evolved evasion strategies that perturb immune regulation.
View Article and Find Full Text PDFClinical and epidemiological studies have implicated chronic infections in the development of atherosclerosis. It has been proposed that common mechanisms of signaling via TLRs link stimulation by multiple pathogens to atherosclerosis. However, how pathogen-specific stimulation of TLR4 contributes to atherosclerosis progression remains poorly understood.
View Article and Find Full Text PDFPorphyromonas gingivalis is the primary etiologic agent of periodontal disease that is associated with other human chronic inflammatory diseases, including atherosclerosis. The ability of P. gingivalis to invade and persist within human aortic endothelial cells (HAEC) has been postulated to contribute to a low to moderate chronic state of inflammation, although how this is specifically achieved has not been well defined.
View Article and Find Full Text PDFMicrobiology (Reading)
December 2009
Since Neisseria gonorrhoeae and Neisseria meningitidis are obligate human pathogens, a comparison with commensal species of the same genus could reveal differences important in pathogenesis. The recent completion of commensal Neisseria genome draft assemblies allowed us to perform a comparison of the genes involved in the catalysis, assembly and regulation of the denitrification pathway, which has been implicated in the virulence of several bacteria. All species contained a highly conserved nitric oxide reductase (NorB) and a nitrite reductase (AniA or NirK) that was highly conserved in the catalytic but divergent in the N-terminal lipid modification and C-terminal glycosylation domains.
View Article and Find Full Text PDFNeisseria gonorrhoeae encodes a number of important genes that aid in survival during times of oxidative stress. The same immune cells capable of oxygen-dependent killing mechanisms also have the capacity to generate reactive nitrogen species (RNS) that may function antimicrobially. F62 and eight additional gonococcal strains displayed a high level of resistance to peroxynitrite, while Neisseria meningitidis and Escherichia coli showed a four- to seven-log and a four-log decrease in viability, respectively.
View Article and Find Full Text PDFNeisseria gonorrhoeae can grow by anaerobic respiration using nitrite as an alternative electron acceptor. Under these growth conditions, N. gonorrhoeae produces and degrades nitric oxide (NO), an important host defense molecule.
View Article and Find Full Text PDFThe ability of Neisseria gonorrhoeae to reduce nitric oxide (NO) may have important immunomodulatory effects on the host during infection. Therefore, a comprehensive understanding of the regulatory mechanism of the nitric oxide reductase gene (norB) needs to be elucidated. To accomplish this, we analysed the functional regions of the norB upstream region.
View Article and Find Full Text PDF