Publications by authors named "Kenneth B Eisenthal"

This paper presents the first study of the rotations of rigid molecules in 3 dimensions at the air/water interface, using the femtosecond time resolved sum frequency generation (SFG) technique. For the purpose of this research, the aromatic dye molecule C153 was chosen as an example of a molecule having two functional groups that are SFG active, one being the hydrophilic -C=O group and the other the hydrophobic -CF group. From polarized SFG measurements, the orientations of the two chromophores with respect to the surface normal were obtained.

View Article and Find Full Text PDF

Second harmonic generation (SHG) spectroscopy has been applied to probe the fused silica/water interface at pH 7 and the uncharged 11¯02 sapphire/water interface at pH 5.2 in contact with aqueous solutions of NaCl, NaBr, NaI, KCl, RbCl, and CsCl as low as several 10 μM. For ionic strengths up to about 0.

View Article and Find Full Text PDF

Probing the polarization of water molecules at charged interfaces by second harmonic generation spectroscopy has been heretofore limited to isotropic materials. Here we report non-resonant nonlinear optical measurements at the interface of anisotropic z-cut α-quartz and water under conditions of dynamically changing ionic strength and bulk solution pH. We find that the product of the third-order susceptibility and the interfacial potential, χ × Φ(0), is given by (χ-iχ) × Φ(0), and that the interference between this product and the second-order susceptibility of bulk quartz depends on the rotation angle of α-quartz around the z axis.

View Article and Find Full Text PDF

We develop a model to probe the relative orientation of two second-order polarizable daunomycin molecules that are intercalated into a DNA duplex using optical second-harmonic (SH) generation. The SH field generated by the daunomycin molecules interfere with each other. Because the interference depends on the relative orientation of the daunomycin molecules, we can control the interference by changing the number of base pairs separating them.

View Article and Find Full Text PDF

The transacting activator of transduction (TAT) protein plays a key role in the progression of AIDS. Studies have shown that a +8 charged sequence of amino acids in the protein, called the TAT peptide, enables the TAT protein to penetrate cell membranes. To probe mechanisms of binding and translocation of the TAT peptide into the cell, investigators have used phospholipid liposomes as cell membrane mimics.

View Article and Find Full Text PDF

A method is described in which the interference of radiated second-harmonic electric fields generated by a pair of oriented molecules intercalated into double-stranded DNA is controlled and measured. The results show that the relative molecular orientation of the two molecules significantly changes the magnitude of the observed second-harmonic generation intensity, which is described by a simple model that accounts for the interferences of the radiated fields. The technique presented shows promise for future experiments investigating structural changes induced by the formation of a DNA-biomolecule complex.

View Article and Find Full Text PDF

Second harmonic generation (SHG) was used to selectively probe DNA-drug interactions without the need for chemical labels or invasive detection methods. In particular, the binding constant of the anticancer drug daunomycin to a recognition triplet sequence in a 33-mer of double stranded DNA was determined. The SHG method, which is interface selective, probed the binding of daunomycin to DNA that was tethered to the surface of colloidal microparticles suspended in aqueous solution.

View Article and Find Full Text PDF

Time-resolved second harmonic generation is used to monitor the excited-state relaxation dynamics of molecules adsorbed to the surface of colloidal microparticles suspended in solution. The cationic organic dye, malachite green (MG), is adsorbed to the negatively charged surface of polystyrene sulfate microparticles in water. MG is photoexcited to the S1 excited state by a 615 nm pump pulse.

View Article and Find Full Text PDF

The binding of EcoR1 to a 90-bp DNA duplex attached to colloidal microparticles and the subsequent cleavage by the enzyme was observed in real time and label-free with time-resolved second harmonic (SH) spectroscopy. This method provides a unique way to investigate biomolecular interactions based on its sensitivity to changes in structure and electrical charge on formation of a complex and subsequent dynamics. The binding of EcoR1 to the recognition sequence in DNA appears as a rapid increase in the SH signal, which is attributed to the enzyme-induced change in the DNA conformation, going from a rod-like to a bent shape.

View Article and Find Full Text PDF

The transport kinetics of the positively charged triphenylmethane dye, malachite green (MG(+)), across liposome bilayers effects the transport of monovalent inorganic cations when ionophores are present in the membrane. Three different types of ionophores characterized by different transport mechanisms have been studied. The ionophores are gramicidin A (gA) (a channel former), valinomycin (VAL) (a lipophilic cyclopeptide that encloses an alkali ion), and carbonyl cyanide-m-chlorophenylhydrazone (CCCP) (a weak acid that functions as a protonophore).

View Article and Find Full Text PDF

The first time-resolved experiments in which interfacial molecules are pumped to excited electronic states and probed by vibrational sum frequency generation (SFG) are reported. This method was used to measure the out-of-plane rotation dynamics, i.e.

View Article and Find Full Text PDF

Dendritic spines mediate most excitatory synapses in the brain. Past theoretical work and recent experimental evidence have suggested that spines could contain sodium channels. We tested this by measuring the effect of the sodium channel blocker tetrodotoxin (TTX) on depolarizations generated by two-photon uncaging of glutamate on spines from mouse neocortical pyramidal neurons.

View Article and Find Full Text PDF

Second harmonic generation (SHG) from membrane-bound chromophores can be used to image membrane potential in neurons. We investigate the biophysical mechanism responsible for the SHG voltage sensitivity of the styryl dye FM 4-64 in pyramidal neurons from mouse neocortical slices. SHG signals are exquisitely sensitive to the polarization of the incident laser light.

View Article and Find Full Text PDF

In mammalian cortex, most excitatory inputs occur on dendritic spines, avoiding dendritic shafts. Although spines biochemically isolate inputs, nonspiny neurons can also implement biochemical compartmentalization; so, it is possible that spines have an additional function. We have recently shown that the spine neck can filter membrane potentials going into and out of the spine.

View Article and Find Full Text PDF

Dendritic spines receive most synaptic inputs in the forebrain. Their morphology, with a spine head isolated from the dendrite by a slender neck, indicates a potential role in isolating inputs. Indeed, biochemical compartmentalization occurs at spine heads because of the diffusional bottleneck created by the spine neck.

View Article and Find Full Text PDF

The effect of charge on the rotational dynamics of the molecular probe coumarin 314 (C314) at air/water interfaces covered with the negatively charged surfactant sodium dodecyl sulfate (SDS) was investigated using femtosecond time-resolved second harmonic spectroscopy. The out-of-plane orientational time constant at the highest SDS surface coverage of 100 A2 per molecule is 383 +/- 9 ps. The rotational dynamics is slower than at the air/water interface where the out-of-plane reorientational time constant is 336 +/- 6 ps.

View Article and Find Full Text PDF

Second harmonic generation (SHG) spectroscopy was used to characterize the pH-dependent electrostatic charging behavior of (0001) and (102) crystallographic surfaces of corundum (alpha-Al2O3) single-crystal substrates. The pH value of the point of zero charge (pH(pzc)) for each surface was determined by monitoring the SH response during three consecutive pH titrations conducted with 1, 10, and 100 mM NaNO3 carbonate-free aqueous solutions. The crossing point of the three titration curves, which corresponds to the pH(pzc), occurs at pH 4.

View Article and Find Full Text PDF

A method to determine the absolute orientation of molecules at liquid interfaces by sum frequency generation (SFG) is reported. It is based on measurements of the orientations of two nonparallel vibrationally active chromophores in the molecule of interest combined with a rotation matrix formulation to obtain the absolute molecular orientation. We chose m-tolunitrile, a planar molecule adsorbed to the air/water interface, as a proof-of-method experiment.

View Article and Find Full Text PDF

Ultrafast excited-state electron transfer has been monitored at the liquid/liquid interface for the first time. Second harmonic generation (SHG) pump/probe measurements monitored the electron transfer (ET) occurring between photoexcited coumarin 314 (C314) acceptor and dimethylaniline (DMA) donor molecules. In the treatment of this problem, translational diffusion of solute molecules can be neglected since the donor DMA is one of the liquid phases of the interface.

View Article and Find Full Text PDF

Dendritic spines mediate most excitatory inputs in the brain. Although it is clear that spines compartmentalize calcium, it is still unknown what role, if any, they play in integrating synaptic inputs. To investigate the electrical function of spines directly, we used second harmonic generation (SHG) imaging of membrane potential in pyramidal neurons from hippocampal cultures and neocortical brain slices.

View Article and Find Full Text PDF

The transport of an organic cation across a 4-5 nm liposome bilayer is observed in real time using second harmonic generation. It is proposed that an electrostatic barrier between the inside and outside of the liposome develops as the cation crosses the bilayer. This would explain why the SHG signal does not approach zero at long times.

View Article and Find Full Text PDF