Chronic kidney disease is a common disease with increasing prevalence in the western population. One common reason for chronic kidney failure is diabetic nephropathy. Diabetic nephropathy and hyperglycemia are characteristics of the mouse inbred strain KK/HlJ, which is predominantly used as a model for metabolic syndrome due to its inherited glucose intolerance and insulin resistance.
View Article and Find Full Text PDFUnlabelled: BMD is highly heritable; however, little is known about the genes. To identify loci controlling BMD, we conducted a QTL analysis in a (B6 x 129) F2 population of mice. We report on additional QTLs and also narrow one QTL by combining the data from multiple crosses and through haplotype analysis.
View Article and Find Full Text PDFQuantitative trait locus (QTL) mapping was employed to investigate the genetic determinants of cholesterol gallstone formation in a large intercross between mouse strains SM/J (resistant) and NZB/B1NJ (susceptible). Animals consumed a gallstone-promoting diet for 18 weeks. QTL analyses were performed using gallstone weight and gallstone absence/presence as phenotypes; various models were explored for genome scans.
View Article and Find Full Text PDFThe plasma lipid concentrations and obesity of C57BL/6J (B6) and 129S1/SvImJ (129) inbred mouse strains fed a high-fat diet containing 15% dairy fat, 1% cholesterol, and 0.5% cholic acid differ markedly. To identify the loci controlling these traits, we conducted a quantitative trait loci (QTL) analysis of 294 (B6 x 129) F(2) females fed a high-fat diet for 14 weeks.
View Article and Find Full Text PDFTo determine the genetic contribution to variation among lipoprotein cholesterol levels, we performed quantitative trait locus (QTL) analyses on an intercross between mouse strains RIIIS/J and 129S1/SvImJ. Male mice of the parental strains and the reciprocal F1 and F2 populations were fed a high-cholesterol, cholic acid-containing diet for 8-12 wk. At the end of the feeding period, plasma total, high-density lipoprotein (HDL), and non-HDL cholesterol were determined.
View Article and Find Full Text PDFTo identify genetic determinants of lipoprotein levels, we are performing quantitative trait locus (QTL) analysis on a series of mouse intercrosses in a "daisy chain" experimental design, to increase the power of detecting QTL and to identify common variants that should segregate in multiple intercrosses. In this study, we intercrossed strains CAST/Ei and 129S1/SvImJ, determined HDL, total, and non-HDL cholesterol levels, and performed QTL mapping using Pseudomarker software. For HDL cholesterol, we identified two significant QTL on chromosome (Chr) 1 (Hdlq5, 82 cM, 60-100 cM) and Chr 4 (Hdlq10, 20 cM, 10-30 cM).
View Article and Find Full Text PDFObjective: The C57BL/6 (B6) and 129 mouse inbred strains differ markedly in plasma HDL-cholesterol concentrations and atherosclerosis susceptibility after a high-fat diet consumption. To identify loci controlling these traits, we performed quantitative trait loci (QTL) analysis.
Methods And Results: We fed a high-fat diet to 294 (B6x129S1/SvImJ)F2 females for 14 weeks, measured plasma HDL concentrations and size of aortic fatty-streak lesions, genotyped F2 females, and performed QTL analysis.
Cholesterol gallstone formation is a response to interactions between multiple genes and environmental stimuli. To determine the subset of cholesterol gallstone susceptibility (Lith) genes possessed by strains CAST/Ei (susceptible) and 129S1/SvImJ (resistant), we conducted quantitative trait locus (QTL) analyses of an intercross between these strains. Parental strains and F(1) mice of both genders were evaluated for gallstone formation after consumption of a lithogenic diet for 8 wk.
View Article and Find Full Text PDFA complex genetic basis determines the individual predisposition to develop cholesterol gallstones in response to environmental factors. We employed quantitative trait locus/loci (QTL) analyses of an intercross between inbred strains CAST/Ei (susceptible) and DBA/2J (resistant) to determine the subset of gallstone susceptibility (Lith) genes these strains possess. Parental and first filial generation mice of both genders and male intercross offspring were evaluated for gallstone formation after feeding a lithogenic diet.
View Article and Find Full Text PDFTo investigate genetic contributions to individual variations of lipoprotein cholesterol concentrations, we performed quantitative trait locus/loci (QTL) analyses of an intercross of CAST/Ei and DBA/2J inbred mouse strains after feeding a high-cholesterol cholic acid diet for 10 weeks. In total, we identified four QTL for HDL cholesterol. Three of these were novel and were named Hdlq10 [20 centimorgans (cM), chromosome 4], Hdlq11 (48 cM, chromosome 6), and Hdlq12 (68 cM, chromosome 6).
View Article and Find Full Text PDF