Because of the cytotoxic potential of CD8(+) T cells, maintenance of CD8(+) peripheral tolerance is extremely important. A major peripheral tolerance mechanism is the induction of anergy, a refractory state in which proliferation and IL-2 production are inhibited. We used a TCR transgenic mouse model to investigate the signaling defects in CD8(+) T cells rendered anergic in vivo.
View Article and Find Full Text PDFT lymphocytes play a critical role in cell-mediated immune responses. During activation, extracellular and intracellular signals alter T cell metabolism in order to meet the energetic and biosynthetic needs of a proliferating, active cell, but control of these phenomena is not well defined. Previous studies have demonstrated that signaling from the costimulatory receptor CD28 enhances glucose utilization via the phosphatidylinositol-3-kinase (PI3K) pathway.
View Article and Find Full Text PDFActivation of a naive T cell is a highly energetic event, which requires a substantial increase in nutrient metabolism. Upon stimulation, T cells increase in size, rapidly proliferate, and differentiate, all of which lead to a high demand for energetic and biosynthetic precursors. Although amino acids are the basic building blocks of protein biosynthesis and contribute to many other metabolic processes, the role of amino acid metabolism in T cell activation has not been well characterized.
View Article and Find Full Text PDFThe establishment and maintenance of T cell tolerance to self- and non-pathogenic foreign antigens is critical for immune homeostasis. Thymic deletion of self-reactive T cells is an important component of tolerance, but it is incomplete, and does not establish tolerance to most foreign antigens. Thus, mechanisms of peripheral tolerance are also required.
View Article and Find Full Text PDFAnergy is an important mechanism of maintaining peripheral immune tolerance. T cells rendered anergic are refractory to further stimulation and are characterized by defective proliferation and IL-2 production. We used a model of in vivo anergy induction in murine CD8+ T cells to analyze the initial signaling events in anergic T cells.
View Article and Find Full Text PDFThe Bcl-2-associated X protein (Bax) and Bcl-2-antagonist/killer (Bak) are essential regulators of lymphocyte apoptosis, but whether they play a role in viable T cell function remains unclear. Here, we report that T cells lacking both Bax and Bak display defects in antigen-specific proliferation because of Ca(2+)-signaling defects. Bax(-/-), Bak(-/-) T cells displayed defective T cell receptor (TCR)- and inositol-1,4,5-trisphosphate (IP(3))-dependent Ca(2+) mobilization because of altered endoplasmic reticulum (ER) Ca(2+) regulation that was reversed by Bax's reintroduction.
View Article and Find Full Text PDFWe generated three populations of macrophages (Mphi) in vitro and characterized each. Classically activated Mphi (Ca-Mphi) were primed with IFN-gamma and stimulated with LPS. Type II-activated Mphi (Mphi-II) were similarly primed but stimulated with LPS plus immune complexes.
View Article and Find Full Text PDFCTLA-4 and PD-1 are receptors that negatively regulate T-cell activation. Ligation of both CTLA-4 and PD-1 blocked CD3/CD28-mediated upregulation of glucose metabolism and Akt activity, but each accomplished this regulation using separate mechanisms. CTLA-4-mediated inhibition of Akt phosphorylation is sensitive to okadaic acid, providing direct evidence that PP2A plays a prominent role in mediating CTLA-4 suppression of T-cell activation.
View Article and Find Full Text PDFUpon stimulation, lymphocytes develop from small resting cells into highly proliferative and secretory cells. Although a great deal of study has focused on the genetic program induced by Ag receptor signals, lymphocytes must also regulate their metabolic function to meet the energetic demands of activation. In this review, we discuss the changes in cellular metabolism that accompany lymphocyte activation, with a particular emphasis on glucose metabolism, a major source of both energy and biosynthetic building blocks.
View Article and Find Full Text PDFThe role of the NKG2D immunoreceptor and its ligands in antitumor immune response is incompletely understood. Here, we report that effector immune cells infiltrating ovarian carcinoma are mostly CD8+ lymphocytes lacking CD28 but expressing the NKG2D costimulatory receptor. Human ovarian carcinoma expresses the novel NKG2D ligand lymphocyte effector cell toxicity-activating ligand (Letal).
View Article and Find Full Text PDFLymphocyte activation initiates a program of cell growth, proliferation, and differentiation that increases metabolic demand. Although T cells increase glucose uptake and glycolysis during an immune response, the signaling pathways that regulate these increases remain largely unknown. Here we show that CD28 costimulation, acting through phosphatidylinositol 3'-kinase (PI3K) and Akt, is required for T cells to increase their glycolytic rate in response to activation.
View Article and Find Full Text PDFThiazolidinediones (TZDs) are widely used for treatment of type 2 diabetes mellitus. Peroxisome proliferator-activated receptor gamma (PPAR gamma) is the molecular target of TZDs and is believed to mediate the apoptotic effects of this class of drugs in a variety of cell types, including B and T lymphocytes. The finding that TZDs induce lymphocyte death has raised concerns regarding whether TZDs might further impair immune functions in diabetics.
View Article and Find Full Text PDF