Machine learning (ML) is an intelligent data mining technique that builds a prediction model based on the learning of prior knowledge to recognize patterns in large-scale data sets. We present an ML-based methodology for transcriptome analysis via comparison of gene coexpression networks, implemented as an R package called machine learning-based differential network analysis (mlDNA) and apply this method to reanalyze a set of abiotic stress expression data in Arabidopsis thaliana. The mlDNA first used a ML-based filtering process to remove nonexpressed, constitutively expressed, or non-stress-responsive "noninformative" genes prior to network construction, through learning the patterns of 32 expression characteristics of known stress-related genes.
View Article and Find Full Text PDFFrom screening a population of Arabidopsis overexpression lines, two Arabidopsis genes were identified, EFO1 (early flowering by overexpression 1) and EFO2, that confer early flowering when overexpressed. The two genes encode putative WD-domain proteins which share high sequence similarity and constitute a small subfamily. Interestingly, the efo2-1 loss-of-function mutant also flowered earlier in short days and slightly earlier in long days than the wild type, while no flowering-time or morphological differences were observed in efo1-1 relative to the wild type.
View Article and Find Full Text PDFBackground: The third, or wobble, position in a codon provides a high degree of possible degeneracy and is an elegant fault-tolerance mechanism. Nucleotide biases between organisms at the wobble position have been documented and correlated with the abundances of the complementary tRNAs. We and others have noticed a bias for cytosine and guanine at the third position in a subset of transcripts within a single organism.
View Article and Find Full Text PDFWe present a large portion of the transcriptome of Zea mays, including ESTs representing 484,032 cDNA clones from 53 libraries and 36,565 fully sequenced cDNA clones, out of which 31,552 clones are non-redundant. These and other previously sequenced transcripts have been aligned with available genome sequences and have provided new insights into the characteristics of gene structures and promoters within this major crop species. We found that although the average number of introns per gene is about the same in corn and Arabidopsis, corn genes have more alternatively spliced isoforms.
View Article and Find Full Text PDFGenes controlling hormone levels have been used to increase grain yields in wheat (Triticum aestivum) and rice (Oryza sativa). We created transgenic rice plants expressing maize (Zea mays), rice, or Arabidopsis thaliana genes encoding sterol C-22 hydroxylases that control brassinosteroid (BR) hormone levels using a promoter that is active in only the stems, leaves, and roots. The transgenic plants produced more tillers and more seed than wild-type plants.
View Article and Find Full Text PDFArabidopsis is currently the reference genome for higher plants. A new, more detailed statistical analysis of Arabidopsis gene structure is presented including intron and exon lengths, intergenic distances, features of promoters, and variant 5'-ends of mRNAs transcribed from the same transcription unit. We also provide a statistical characterization of Arabidopsis transcripts in terms of their size, UTR lengths, 3'-end cleavage sites, splicing variants, and coding potential.
View Article and Find Full Text PDFCYP51 exists in all organisms that synthesize sterols de novo. Plant CYP51 encodes an obtusifoliol 14alpha-demethylase involved in the postsqualene sterol biosynthetic pathway. According to the current gene annotation, the Arabidopsis (Arabidopsis thaliana) genome contains two putative CYP51 genes, CYP51A1 and CYP51A2.
View Article and Find Full Text PDFTo shed new light on gene involvement in plant cuticular-wax production, 11 eceriferum (cer) mutants of Arabidopsis having dramatic alterations in wax composition of inflorescence stems were used to create 14 double cer mutants each with two homozygous recessive cer loci. A comprehensive analysis of stem waxes on these double mutants revealed unexpected CER gene interactions and new ideas about individual CER gene functions. Five of the 14 double cer mutants produced significantly more total wax than one of their respective cer parents, indicating from a genetic standpoint a partial bypassing (or complementation) of one cer mutation by the other.
View Article and Find Full Text PDFMobile insertion elements such as transposons and T-DNA generate useful genetic variation and are important tools for functional genomics studies in plants and animals. The spectrum of mutations obtained in different systems can be highly influenced by target site preferences inherent in the mechanism of DNA integration. We investigated the target site preferences of Agrobacterium T-DNA insertions in the chromosomes of the model plant Arabidopsis thaliana.
View Article and Find Full Text PDFWe conducted a novel non-visual screen for cuticular wax mutants in Arabidopsis thaliana (L.) Heynh. Using gas chromatography we screened over 1,200 ethyl methane sulfonate (EMS)-mutagenized lines for alterations in the major A.
View Article and Find Full Text PDFThe UNUSUAL FLORAL ORGANS (UFO) gene is required for multiple processes in the developing Arabidopsis flower, including the proper patterning and identity of both petals and stamens. The gene encodes an F-box-containing protein, UFO, which interacts physically and genetically with the Skp1 homolog, ASK1. In this report, we describe four ufo alleles characterized by the absence of petals, which uncover another role for UFO in promoting second whorl development.
View Article and Find Full Text PDFMutants defective in the biosynthesis or signaling of brassinosteroids (BRs), plant steroid hormones, display dwarfism. Loss-of-function mutants for the gene encoding the plasma membrane-located BR receptor BRI1 are resistant to exogenous application of BRs, and characterization of this protein has contributed significantly to the understanding of BR signaling. We have isolated two new BR-insensitive mutants (dwarf12-1D and dwf12-2D) after screening Arabidopsis ethyl methanesulfonate mutant populations.
View Article and Find Full Text PDFRecent studies on jasmonic acid (JA) biosynthetic mutants have shown that jasmonates play essential roles in pollen maturation and dehiscence and wound-induced defence against biotic attacks. To better understand the biosynthetic mechanisms of this essential plant hormone, we isolated an Arabidopsis knock-out mutant defective in the JA biosynthetic gene CYP74A (allene oxide synthase, AOS) using reverse genetics screening methods. This enzyme catalyses dehydration of the hydroperoxide to an unstable allene oxide in the JA biosynthetic pathway.
View Article and Find Full Text PDFBackground: Annotation of eukaryotic genomes is a complex endeavor that requires the integration of evidence from multiple, often contradictory, sources. With the ever-increasing amount of genome sequence data now available, methods for accurate identification of large numbers of genes have become urgently needed. In an effort to create a set of very high-quality gene models, we used the sequence of 5,000 full-length gene transcripts from Arabidopsis to re-annotate its genome.
View Article and Find Full Text PDF