Publications by authors named "Kennedy Owusu-Afriyie"

Article Synopsis
  • - Tropical forests in equatorial Africa are crucial for the global carbon cycle, but there has been insufficient biometric data on their productivity levels (GPP and NPP).
  • - A study conducted on 14 one-hectare plots in West Africa revealed that these forests generally exhibit higher productivity and lower carbon use efficiency compared to a similar aridity gradient in the Amazon.
  • - The research highlighted that the highest reported NPP and GPP for intact forests occur at a medium-aridity site in Ghana, with findings indicating that existing data models underestimate forest productivity in both regions.
View Article and Find Full Text PDF

Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old-growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics.

View Article and Find Full Text PDF

Net Primary Productivity (NPP) is one of the most important parameters in describing the functioning of any ecosystem and yet it arguably remains a poorly quantified and understood component of carbon cycling in tropical forests, especially outside of the Americas. We provide the first comprehensive analysis of NPP and its carbon allocation to woody, canopy and root growth components at contrasting lowland West African forests spanning a rainfall gradient. Using a standardized methodology to study evergreen (EF), semi-deciduous (SDF), dry forests (DF) and woody savanna (WS), we find that (i) climate is more closely related with above and belowground C stocks than with NPP (ii) total NPP is highest in the SDF site, then the EF followed by the DF and WS and that (iii) different forest types have distinct carbon allocation patterns whereby SDF allocate in excess of 50% to canopy production and the DF and WS sites allocate 40%-50% to woody production.

View Article and Find Full Text PDF