Phosphodiesterase-5 (PDE5) is phosphorylated at a single serine residue by cyclic nucleotide-dependent protein kinases. To test for a direct effect of phosphorylation on the PDE5 catalytic site, independent of cGMP binding to the allosteric sites of the enzyme, binding of the catalytic site-specific substrate analog [(3)H]tadalafil to PDE5 was measured. Phosphorylation increased [(3)H]tadalafil binding 3-fold, whereas cGMP caused a 1.
View Article and Find Full Text PDFPhosphodiesterase-5 (PDE5) inhibitors (sildenafil, vardenafil, or tadalafil) or phosphorylation by cyclic nucleotide-dependent protein kinase causes an apparent conformational change in PDE5, as indicated by a shift in migration on non-denaturing PAGE gels and an altered pattern of tryptic digestion. Combination of cGMP and a PDE5 inhibitor or phosphorylation does not cause a further gel shift or change in tryptic digest. Phosphorylation of PDE5 is stimulated by inhibitors, and combination of cGMP and inhibitor does not cause further phosphorylation.
View Article and Find Full Text PDFPhosphodiesterase-5 (PDE5) and cGMP-dependent protein kinase (PKG) play key roles in cGMP signaling. PDE5 has a catalytic domain (C domain) that hydrolyzes cGMP and a regulatory domain (R domain) that binds cGMP at allosteric sites. We recently demonstrated that in corpus cavernosum, PDE5 concentration exceeds basal cGMP by ~5-fold making it possible that its allosteric sites could bind a significant fraction of the total cellular cGMP.
View Article and Find Full Text PDFThe physiological effects of cGMP are largely determined by the activities of intracellular receptors, including cGMP-dependent protein kinase (PKG) and cGMP-binding cyclic nucleotide phosphodiesterases (PDEs), and the distribution of cGMP among these receptors dictates activity of the signalling pathway. In the present study, the effects of PKG-Ialpha or PKG-Ibeta on the rate of cGMP hydrolysis by the isolated PDE5 catalytic domain were examined. PKG-Ialpha strongly inhibited cGMP hydrolysis with an IC(50) value of 217 nM, which is similar to the physiological concentration of PKG in pig coronary artery reported previously.
View Article and Find Full Text PDFSubstrate binding to the phosphodiesterase-5 (PDE5) catalytic site increases cGMP binding to the regulatory domain (R domain). The latter promotes PDE5 phosphorylation by cyclic nucleotide-dependent protein kinases, which activates catalysis, enhances allosteric cGMP binding, and causes PDE5A1 to apparently elongate. A human PDE5A1 R domain fragment (Val(46)-Glu(539)) containing the phosphorylation site (Ser(102)) and allosteric cGMP-binding sites was studied.
View Article and Find Full Text PDF