Publications by authors named "Kenlin Chang"

Biomass is an abundant and sustainable resource that can be converted into energy and chemicals. Therefore, the development of efficient methods for the conversion of biomass into platform intermediates is crucial. In this study, the one-pot conversion of sugars into 5-hydroxymethylfurfural (HMF) and furfural was achieved using the metal-organic framework combined with metal ions [MIL-101(Cr)] as a high-activity catalyst, and a deep eutectic solvent (choline chloride and lactic acid) as a green solvent.

View Article and Find Full Text PDF

The surge in kitchen waste production is causing food-borne disease epidemics and is a public health threat worldwide. Additionally, the effectiveness of conventional treatment approaches may be hampered by KW's high moisture, salt, and oil content. Hydrothermal carbonization (HTC) is a promising new technology to convert waste biomass into environmentally beneficial derivatives.

View Article and Find Full Text PDF

Glucose can be isomerized into fructose and dehydrated into key platform biochemicals, following the "bio-refinery concept". However, this process generates black and intractable substances called humin, which possess a polymeric furanic-type structure. In this study, glucose-derived humin (GDH) was obtained by reacting D-glucose with an allylamine catalyst in a deep eutectic solvent medium, followed by a carbonization step.

View Article and Find Full Text PDF

In this study, different types of lignocellulosic biomas were used as substrates for the conversion to 5-HMF via biphasic reaction system that is composed of a reaction phase (aqueous phase) and an extraction phase (organic phase) under the catalysis of various metal salts. Deep eutectic solvents (DESs), ionic liquid [BMIM]Cl, aqueous choline chloride, aqueous betaine hydrochloride, and ethylamine hydrochloride were used as the reaction phase in the combination of dimethyl sulfoxide (DMSO) as organic solvents. The highest yields of 5-HMF obtained from pineapple stems in reactions with DES were 40.

View Article and Find Full Text PDF

The utilization of organic solid waste (OSW) for preparing standardized seedling substrates is a main challenge due to its temporal and spatial variability. This study aims to form models based on data from the literature and validate them through experiments to explore a standardized seedling substrate. The typical OSW in Hainan Province, including municipal sewage sludge (MSS), coconut bran (CB), seaweed mud (SM), and municipal sewage sludge biochar (MSSB), was used as raw material.

View Article and Find Full Text PDF

The extensive use of plastic products and rapid industrialization have created a universal concern about microplastics (MPs). MPs can pose serious environmental risks when combined with heavy metals. However, current research on the combined effects of MPs and hexavalent chromium [Cr(VI)] on plants is insufficient.

View Article and Find Full Text PDF

The exploitation of lignocellulosic biomass (LB) such as sugar bagasse waste in biorefineries is the most cost-effective and favourable sustainable approach to producing essential platform chemicals, materials, and energy environmentally benignly. Herein, a microwave-mediated deep eutectic solvents (DESs)/dimethyl sulfoxide (DMSO) system for efficiently processing LB waste into platform chemicals was proposed thereof. Under optimized appropriate diverse parameters such as solvent varieties, catalyst dosage, DMSO addition, reaction time and temperature, the proposed catalytic system (i.

View Article and Find Full Text PDF

The dielectric barrier discharge (DBD) of non-thermal plasmas was combined with a self-made photocatalyst to remove isopropanol (IPA). Synthesis conditions for the novel photocatalyst, including calcination temperature and copper loading, were varied before photocatalysis to obtain at the optimal reaction efficiency. The effects of initial IPA concentration, oxygen content, and catalyst dosage were also observed.

View Article and Find Full Text PDF

In this study, waste peanut shells were sulfur-impregnated and used as acid catalysts in the presence of an ionic liquid for the conversion of fructose, glucose, and cellulose into 5-hydroxymethylfurfural, a useful chemical intermediate for biofuel production. Effects of sulfur-doping duration (1 h and 5 h), solvent type and proportion, reaction temperature (130 °C, 140 °C, and 150 °C), time (30-240 min), catalyst-to-substrate ratio (1-2.5 m/m), and agricultural residue (peanut shell, Canada wheat straw, water hyacinth, stalk, and reed) on HMF yields were investigated.

View Article and Find Full Text PDF

The effects of chymosin on the physicochemical and hydrolysis characteristics of casein micelles and individual caseins were investigated. Adding 0.03 units of chymosin/mL led to the casein micelles in skim milk coagulating after a 3 h incubation period at 30 °C.

View Article and Find Full Text PDF

This study used iron modified titanate nanotube arrays (Fe/TNAs) to remove in a photoelectrochemical system. The Fe/TNAs was synthesized by the anodization method and followed by the square wave voltammetry electrochemical deposition (SWVE) method with ferric nitrate as the precursor. Fe/TNAs were characterized by SEM, XRD, XPS, and UV-vis DRS to investigate the surface properties and light absorption.

View Article and Find Full Text PDF

Tracking enzyme, substrate, and surfactant interactions to reach maximum reducing sugar production during enzymatic hydrolysis of plant biomass may provide a better understanding of factors that limit the lignocellulosic material degradation in native rice straw. In this study, enzymes (Cellic Ctec2 cellulase and Cellic Htec2 xylanase) and Triton X-100 (surfactant) were used as biocatalysts for cellulose and xylan degradation and as a lignin blocking agent, respectively. The response surface model ( = 0.

View Article and Find Full Text PDF

Enzymatic hydrolysis is a rate-limiting process in lignocellulose biorefinery. The reaction involves complex enzyme-substrate and enzyme-lignin interactions in both liquid and solid phases, and has not been well characterized numerically. In this study, a kinetic model was developed to incorporate dynamic enzyme adsorption and product inhibition parameters into hydrolysis simulation.

View Article and Find Full Text PDF

Rice husk is a bulky byproduct with a high silica content from rice milling. In this study, the application of an acid-catalyzed ionic liquid (IL) pretreatment was studied for processing rice husks with a rugged structure. The pretreatment conditions were 130°C for 30 min with 1.

View Article and Find Full Text PDF

In this study, the dielectric barrier discharge (DBD) induced by nonthermal plasma (NTP) technology was used for isopropanol (IPA) degradation. IPA, intermediate, final product, and ozone concentrations were analyzed using GC-MS, carbon dioxide detector, and ozone detector. The experimental flow rate and concentration were fixed to 1 L/min and 1200 ppm ± 10%, respectively.

View Article and Find Full Text PDF

An innovative method for utilizing synthetic calcium fluoride (CaF), recovered from fluoride-containing semiconductor wastewater, and waste sulfuric acid (HSO) to produce hydrofluoric acid (HF) was investigated. The research was set to study the low-temperature production of HF via reaction of synthetic CaF and waste HSO. The impact of four factors, including HSO concentration, total volume (HSO + HO)/CaF ratio, drying temperature of synthetic CaF, and reaction carried out under different temperature, on HF productivity was investigated in this study.

View Article and Find Full Text PDF

This study proposed a method for analysis of 10 phthalate esters compounds from wastewater treatment plant sludges. The analytical efficiency of GC-MS for of target compounds was verified by a standard mixture of phthalate esters. The response factors related to the respective internal standards from a five-point calibration curve quantified the phthalate esters in individual compounds.

View Article and Find Full Text PDF

Chlorine-containing organic compounds were discharged informally as a result of untreated industrial wastewater, which caused groundwater pollution. In this study, titanium dioxide nanotube arrays (TNAs) were modified with copper oxide to photoelectrochemical (PEC) active persulfate to degrade trichloroethylene (TCE). The SEM results show copper nano-particles with a cubic shape were successfully deposited on the surface of TNAs.

View Article and Find Full Text PDF

In the present study, was investigated an environmentally friendly method for pretreating lignocellulosic rice straw (RS) by using 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) as an ionic liquid (IL) and 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO) as an acidic-IL (Acidic-IL) under microwave irradiation (microwave-[Bmim]Cl and microwave-[Bmim]HSO). The conversion of lignocellulosic biomass into simple sugars requires both efficient pretreatment and hydrolysis enzymes to produce biofuels and specialty chemicals. Therefore, the applied [Bmim]Cl, [Bmim]HSO, microwave-[Bmim]Cl, and microwave-[Bmim]HSO to improve hydrolysis yields.

View Article and Find Full Text PDF

Spent mushroom substrate (SMS) and textile dyeing sludge (TDS) were (co-)combusted in changing heating rates, blend ratios and temperature. The increased blend ratio improved the ignition, burnout and comprehensive combustion indices. A comparison of theoretical and experimental thermogravimetric curves pointed to significant interactions between 350 and 600 °C.

View Article and Find Full Text PDF

High-concentration nitrogen removal coupled with bioelectric power generation in an algal-bacterial biocathode photo-bioelectrochemical system (PBES) was investigated. The PBES can self-sustaining operation with continuous power output under day/night cycle by alternately using photosynthetic dissolved oxygen and nitrate/nitrite as cathodic electron acceptors. The PBES generated a high maximum power of 110mw/m under illumination and relatively lower power of 40mw/m under dark.

View Article and Find Full Text PDF

Efficient energy usage and energy saving is one of the nowadays necessity for all scientists of IC engine. This is because of the current environmental challenges that have tremendously increased concerning air pollution, particularly pollutant emissions from vehicles. Yet, industries and governments alike have disregarded this phenomenon which has been considerably contributing to climate change.

View Article and Find Full Text PDF

Photo-bioelectrochemical fuel cell (PBFC) represents a promising technology for enhancing removal of antibiotic pollutants while simultaneously sustainable transformation of organic wastes and solar energy into electricity. In this study, simultaneous antibiotic removal and bioelectricity generation were investigated in a PBFC with daily light/dark cycle using oxytetracycline (OTC) as a model compound of antibiotic. The specific OTC removal rate increased by 61% at an external resistance of 50 Ω compared to that in the open-circuit control, which was attributed to bioelectrochemically enhanced co-metabolic degradation in the presence of the bioanode.

View Article and Find Full Text PDF

Additives and biomass were co-combusted with sewage sludge (SS) to promote SS incineration treatment and energy generation. (Co-)combustion characteristics of sewage sludge (SS), water hyacinth (WH), and 5% five additives (KCO, NaCO, MgCO MgO and AlO) were quantified and compared using thermogravimetric-mass spectrometric (TG-MS) and numerical analyses. The combustion performance of SS declined slightly with the additives which was demonstrated by the 0.

View Article and Find Full Text PDF

The present study systematically investigated the combustion characteristics of spent mushroom substrate (SMS) using TG-MS (thermogravimetric/mass spectrometry) and TG-FTIR (thermogravimetric/Fourier transform infrared spectrometry) under five heating rates. The physicochemical characteristics and combustion index pointed to SMS as a promising biofuel for power generation. The high correlation coefficient of the fitting plots and similar activation energy calculated by various methods indicated that four suitable iso-conversional methods were used.

View Article and Find Full Text PDF