Ethylene dimethanesulfonate (EDS) is a molecule with known selective cytotoxicity on adult Leydig cells. A single intraperitoneal injection in rats but not mice, leads to male androgen deprivation and infertility. studies using rat and mouse immortalized Leydig cell lines, showed similar effects of cell death promoted by EDS in rat cells as seen , and suggest that EDS affects gene transcription, which could firstly compromise steroidogenesis before the apoptosis process.
View Article and Find Full Text PDFThe peptide hormone insulin-like 3 (INSL3) is produced almost exclusively by Leydig cells of the male gonad. INSL3 has several functions such as fetal testis descent and bone metabolism in adults. gene expression in Leydig cells is not hormonally regulated but rather is constitutively expressed.
View Article and Find Full Text PDFHormone-induced Leydig cell steroidogenesis requires rapid changes in gene expression in response to various hormones, cytokines, and growth factors. These proteins act by binding to their receptors on the surface of Leydig cells leading to activation of multiple intracellular signaling cascades, downstream of which are several kinases, including protein kinase A (PKA), Ca/calmodulin-dependent protein kinase I (CAMKI), and extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). These kinases participate in hormone-induced steroidogenesis by phosphorylating numerous proteins including transcription factors leading to increased steroidogenic gene expression.
View Article and Find Full Text PDFBackground: Leydig cells produce testosterone and insulin-like 3, two hormones essential for male sex differentiation and reproductive function. The orphan nuclear receptor, chicken ovalbumin upstream promoter transcription factor type II (COUP-TFII), and the zinc finger factor GATA4 are two transcription factors involved in Leydig cell differentiation, gene expression, and function.
Objectives: Several Leydig cell gene promoters contain binding motifs for both GATA factors and nuclear receptors.
In Brief: The insulin-like 3 (INSL3) hormone produced by Leydig cells is essential for proper male sex differentiation, but the regulation of Insl3 expression remains poorly understood. This study describes a new physical and functional cooperation between the nuclear receptors SF1 and COUP-TFII in Insl3 expression.
Abstract: INSL3, a hormone abundantly produced by Leydig cells, is essential for testis descent during fetal life and bone metabolism in adults.
Leydig cells produce androgens that are essential for male sex differentiation and reproductive function. Leydig cell function is regulated by several hormones and signaling molecules, including growth hormone (GH). Although GH is known to upregulate Star gene expression in Leydig cells, its molecular mechanism of action remains unknown.
View Article and Find Full Text PDF