We describe herein a concise synthesis of (+)-neopeltolide, a marine macrolide natural product that elicits a highly potent antiproliferative activity against several human cancer cell lines. Our synthesis exploited the powerful bond-forming ability and high functional group compatibility of olefin metathesis and esterification reactions to minimize manipulations of oxygen functionalities and to maximize synthetic convergency. Our findings include a chemoselective olefin cross-metathesis reaction directed by H-bonding, and a ring-closing metathesis conducted under non-high dilution conditions.
View Article and Find Full Text PDFHerein, we describe the concise synthesis of 2,6-cis-substituted tetrahydropyran derivatives based on a domino olefin cross-metathesis/intramolecular oxa-conjugate cyclization (CM/IOCC) reaction. We have found that the domino CM/IOCC of δ-hydroxy olefins with α,β-unsaturated carbonyl compounds (e.g.
View Article and Find Full Text PDFIntramolecular oxa-conjugate cyclization (IOCC) of α,β-unsaturated carbonyl compounds, triggered by deprotonation with a base, represents a straightforward method for the synthesis of tetrahydropyrans. However, it has been known that stereochemical outcome of IOCC depends on the local structure of substrates and sometimes requires harsh reaction conditions and/or prolonged reaction times for selective formation of 2,6-cis-substituted tetrahydropyrans. These shortcomings limit the feasibility of IOCC in the context of complex natural product synthesis.
View Article and Find Full Text PDFIntramolecular oxa-conjugate cyclization of α,β-unsaturated thioesters under Brønsted acid catalysis, inspired by biosynthesis of polyketide natural products, provides a variety of 2,6-cis-substituted tetrahydropyran derivatives with excellent diastereoselectivities. An added bonus of this methodology is that the product tetrahydropyrans could be readily elaborated to various derivatives by exploiting the unique reactivity of the thioester group.
View Article and Find Full Text PDFA novel strategy for the stereoselective synthesis of substituted tetrahydropyrans has been developed on the basis of a domino olefin cross-metathesis/intramolecular oxa-conjugate cyclization catalyzed by the Hoveyda-Grubbs second-generation catalyst.
View Article and Find Full Text PDF