Deoxyuridine triphosphatase (dUTPase) has emerged as a potential target for drug development as a 5-fluorouracil-based combination chemotherapy. We describe the design and synthesis of a novel class of human dUTPase inhibitors, 1,2,3-triazole-containing uracil derivatives. Compound 45a, which possesses 1,5-disubstituted 1,2,3-triazole moiety that mimics the amide bond of tert-amide-containing inhibitor 6b locked in a cis conformation showed potent inhibitory activity, and its structure-activity relationship studies led us to the discovery of highly potent inhibitors 48c and 50c (IC(50) = ~0.
View Article and Find Full Text PDFHuman deoxyuridine triphosphatase (dUTPase) inhibition is a promising approach to enhance the efficacy of thymidylate synthase (TS) inhibitor based chemotherapy. In this study, we describe the discovery of a novel class of human dUTPase inhibitors based on the conformation restriction strategy. On the basis of the X-ray cocrystal structure of dUTPase and its inhibitor compound 7, we designed and synthesized two conformation restricted analogues, i.
View Article and Find Full Text PDFInhibition of human deoxyuridine triphosphatase (dUTPase) has been identified as a promising approach to enhance the efficacy of 5-fluorouracil (5-FU)-based chemotherapy. This study describes the development of a novel class of dUTPase inhibitors based on the structure-activity relationship (SAR) studies of uracil derivatives. Starting from the weak inhibitor 7 (IC(50) = 100 μM), we developed compound 26, which is the most potent human dUTPase inhibitor (IC(50) = 0.
View Article and Find Full Text PDFWe usually check stenosis rate in patients through the limited directions of angiography. This can result in insufficient evaluation. The importance of the condition of the carotid artery wall in fully accpted nowadays, and ultrasound sonography is being used as a means to study it.
View Article and Find Full Text PDF