We report tunneling transport in spatially controlled networks of quantum Hall (QH) edge states in bilayer graphene. By manipulating the separation, location, and spatial span of QH edge states via gate-defined electrostatics, we observe resonant tunneling between copropagating QH states across incompressible strips. Employing spectroscopic tunneling measurements and an analytical model, we characterize the energy gap, width, density of states, and compressibility of the QH edge states with high precision and sensitivity within the same device.
View Article and Find Full Text PDF