The integration of theory and data drives progress in science, but a persistent barrier to such integration in ecology and evolutionary biology is that theory is often developed and expressed in the form of mathematical models that can feel daunting and inaccessible for students and empiricists with variable quantitative training and attitudes towards math. A promising way to make mathematical models more approachable is to embed them into interactive tools with which one can visually evaluate model structures and directly explore model outcomes through simulation. To promote such interactive learning of quantitative models, we developed EcoEvoApps, a collection of free, open-source, and multilingual R/Shiny apps that include model overviews, interactive model simulations, and code to implement these models directly in R.
View Article and Find Full Text PDFFor most marine organisms, species richness peaks in the Central Indo-Pacific region and declines longitudinally, a striking pattern that remains poorly understood. Here, we used phylogenetic approaches to address the causes of richness patterns among global marine regions, comparing the relative importance of colonization time, number of colonization events, and diversification rates (speciation minus extinction). We estimated regional richness using distributional data for almost all percomorph fishes (17 435 species total, including approximately 72% of all marine fishes and approximately 33% of all freshwater fishes).
View Article and Find Full Text PDF