Publications by authors named "Kenji Okuyama"

The crystal structure of the triple-helical peptide (Pro-Hyp-Gly)3 -Pro-Arg-Gly-(Pro-Hyp-Gly)4 (POG3-PRG-POG4) was determined at 1.45 Å resolution. POG3-PRG-POG4 was designed to permit investigation of the side-chain conformation of the Arg residues in a triple-helical structure.

View Article and Find Full Text PDF

Type I collagen extracted from tendon, skin, and bone of wild type and prolyl 3-hydroxylase 1 (P3H1) null mice shows distinct patterns of 3-hydroxylation and glycosylation of hydroxylysine residues. The A1 site (Pro-986) in the α1-chain of type I collagen is almost completely 3-hydroxylated in every tissue of the wild type mice. In contrast, no 3-hydroxylation of this proline residue was found in P3H1 null mice.

View Article and Find Full Text PDF

The single-crystal structure of the collagen-like peptide (Pro-Pro-Gly)4 -Hyp-Asp-Gly-(Pro-Pro-Gly)4, was analyzed at 1.02 Å resolution. The overall average helical twist (θ = 49.

View Article and Find Full Text PDF

Collagens have long been believed to adopt a triple-stranded molecular structure with a 10/3 symmetry (ten triplet units in three turns) and an axial repeat of 29 Å. This belief even persisted after an alternative structure with a 7/2 symmetry (seven triplet units in two turns) with an axial repeat of 20 Å had been proposed. The uncertainty regarding the helical symmetry of collagens is attributed to inadequate X-ray fiber diffraction data.

View Article and Find Full Text PDF

The single-crystal structures of three collagen-like host-guest peptides, (Pro-Pro-Gly)(4) -Hyp-Yaa-Gly-(Pro-Pro-Gly)(4) [Yaa = Thr, Val, Ser; Hyp = (4R)-4-hydroxyproline] were analyzed at atomic resolution. These peptides adopted a 7/2-helical structure similar to that of the (Pro-Pro-Gly)(9) peptide. The stability of these triple helices showed a similar tendency to that observed in Ac-(Gly-Hyp-Yaa)(10) -NH(2) (Yaa = Thr, Val, Ser) peptides.

View Article and Find Full Text PDF

Solid-state complexation of syndiotactic polystyrene (sPS) with a crown ether compound, 1,4,7,10-tetraoxa-cyclododecane (12-crown-4), took place when a film of sPS/chloroform clathrate was subjected to a guest exchange procedure assisted with a plasticizing agent. The new guest 12-crown-4 molecules were incorporated into the crystalline region of the sPS film, without causing a large conformational change of host sPS helices. X-ray diffraction and thermogravimetric investigations showed that sPS/12-crown-4 complex had a clathrate complex structure which contained four 12-crown-4 molecules per unit cell.

View Article and Find Full Text PDF

Two crystal modifications of a collagen model peptide, (Pro-Pro-Gly)(4)-Hyp-Hyp-Gly-(Pro-Pro-Gly)(4) [where Hyp is (4R,2S)-L-hydroxyproline], showed very similar unit-cell parameters and belonged to the same space group P2(1). Both crystals exhibited pseudo-merohedral twinning. The main difference was in their molecular-packing arrangements.

View Article and Find Full Text PDF

The structure, dynamics, and hydration behavior of a collagen model polypeptide, (L-prolyl-L-prolylglycyl)(10) (PPG10), were investigated in pure water and dilute acetic acid over a wide temperature range using broadband dielectric relaxation (DR) techniques that spanned frequencies from 1 kHz to 20 GHz. All samples showed pronounced dielectric dispersion with two major relaxation processes around 3 MHz and 20 GHz. Because DR measurements sensitively probe dipoles and their dynamics, the structures and ionization states of the carboxy and amino termini of aqueous PPG10 were precisely determined from the relaxation times and strengths in the 3 MHz frequency range.

View Article and Find Full Text PDF

A short collagen model polypeptide, (l-prolyl-l-prolylglycyl)(5) (PPG5), behaves as a fully dissociated flexible zwitterionic polymer chain in pure water. Its first and third normal modes of chain conformational fluctuation were detected as distinct dielectric relaxation modes. Addition of acetic acid at 30 mM to an aqueous solution of PPG5 effectively suppressed the overall relaxation strength by protonation of the carboxy termini of the polypeptide.

View Article and Find Full Text PDF

Structures of (Pro-Pro-Gly)4-Xaa-Yaa-Gly-(Pro-Pro-Gly)4 (ppg9-XYG) where (Xaa, Yaa)=(Pro, Hyp), (Hyp, Pro) or (Hyp, Hyp) were analyzed at high resolution using synchrotron radiation. Molecular and crystal structures of these peptides are very similar to those of the (Pro-Pro-Gly)9 peptide. The results obtained in this study, together with those obtained from related compounds, indicated the puckering propensity of the Hyp in the X position: (1) Hyp(X) residues involved in the Hyp(X):Pro(Y) stacking pairs prefer the down-puckering conformation, as in ppg9-OPG, and ppg9-OOG; (2) Hyp(X) residues involved in the Hyp(X):Hyp(Y) stacking pairs prefer the up-puckering conformation if there is no specific reason to adopt the down-puckering conformation.

View Article and Find Full Text PDF

The triple helix is a specialized protein motif found in all collagens. Although X-ray diffraction studies of collagen began in the 1920s, the very small amount of data available from fiber diffraction of native collagen caused the determination of its molecular conformation to take a very long time. In the early 1950s, two plausible fiber periods of about 20 and 30 A were proposed, together with corresponding single-strand models having 7/2- and 10/3-helical symmetry, respectively.

View Article and Find Full Text PDF

Type III collagen is a critical collagen that comprises extensible connective tissue such as skin, lung, and the vascular system. Mutations in the type III collagen gene, COL3A1, are associated with the most severe forms of Ehlers-Danlos syndrome. A characteristic feature of type III collagen is the presence of a stabilizing C-terminal cystine knot.

View Article and Find Full Text PDF

Single crystal structures of host-guest peptides, (Pro-Hyp-Gly)(4)-Leu-Hyp-Gly-(Pro-Hyp-Gly)(5) (LOG1) and (Pro-Hyp-Gly)(4)- (Leu-Hyp-Gly)(2)-(Pro-Hyp-Gly)(4) (LOG2), have been determined at 1.6 A and 1.4 A resolution, respectively.

View Article and Find Full Text PDF

Average helical twists were calculated by the method of Sugeta and Miyazawa (Biopolymers 1967, 5, 673-679) for all of the collagen model peptides analyzed to date. Calculation of the helical twists of all triplets in each peptide strand provided novel insights for several model peptides. In the (Pro-Pro-Gly)n (n = 9 and 10), the helical twists showed cyclic fluctuations between 40 and 65 degrees with a 20 A period, suggesting that their molecular conformations were close enough to the ideal 7/2-helix to show the helical repeat of 20 A.

View Article and Find Full Text PDF

The crystal structure of the host-guest peptide, (Pro-Pro-Gly)4-(Pro-alloHyp-Gly)-(Pro-Pro-Gly)4, was analyzed at high resolution. allohydroxyproline (alloHyp), 4S-hydroxyproline, was successfully characterized through the use of a host-guest peptide, while the previous study indicated the inability of a triple helical formation of (Pro-alloHyp-Gly)10. A detailed analysis of alloHyp conformation in collagen-like models sheds light on the role played by its puckering in the triple-helix stabilization and destabilization.

View Article and Find Full Text PDF

Based on the fiber diffraction data from native collagen, Rich and Crick proposed the 10/3-helical model with a 28.6 A axial repeat in 1955 (Rich A.; Crick, F.

View Article and Find Full Text PDF

The crystal structure of a collagen-model peptide [(Pro-Pro-Gly)(9)](3) has been determined at 1.33 A resolution. Diffraction data were collected at 100 K using synchrotron radiation, which led to the first structural study of [(Pro-Pro-Gly)(n)](3) under cryogenic conditions.

View Article and Find Full Text PDF

Triple-helical structures of (Pro-Hyp-Gly)n (n = 10, 11) at 100 K and room temperature (RT) were analyzed at 1.26 A resolution by using synchrotron radiation data. Totals of 49 and 42 water molecules per seven triplets in an asymmetric unit were found for the structures at 100 K and RT, respectively.

View Article and Find Full Text PDF

Crystal structures of two polymorphs of chitosan, tendon (hydrated) and annealed (anhydrous) polymorphs, have been reported. In both crystals, chitosan molecule takes up similar conformation (Type I form) to each other, an extended two-fold helix stabilized by intramolecular O3-O5 hydrogen bond, which is also similar to the conformation of chitin or cellulose. Three chitosan conformations other than Type I form have been found in the crystals of chitosan-acid salts.

View Article and Find Full Text PDF

Chitosan/HI type II salt prepared from crab tendon was investigated by X-ray fiber diffraction. Two polymer chains and 16 iodide ions (I(-)) crystallized in a tetragonal unit cell with lattice parameters of a = b = 10.68(3), c (fiber axis) = 40.

View Article and Find Full Text PDF

The three-dimensional structure of chitosan/HI type I salt was determined by the X-ray fiber diffraction technique and linked-atom least-squares refinement method. Two polymer chains and four iodide ions (I(-)) crystallized in a monoclinic unit cell with dimensions a = 9.46(2), b = 9.

View Article and Find Full Text PDF

Fiber diffraction dada from polymers are sufficiently different in kind and quantity from single crystal data as to warrant analyses with a different emphasis: refinement of competing molecular models where torsion angles and bond angles are the explicit variables rather than atomic coordinates. The first linked-atom least-squares (LALS) refinement program had been devolved at Arnott's laboratories at King's College London [Arnott, S., Wonacott, A.

View Article and Find Full Text PDF