Controlled-release systems enhance anti-tumor effects by leveraging local antigen persistence for antigen-presenting cells (APCs) recruitment and T cell engagement. However, constant antigen presentation alone tends to induce dysfunction in tumor-specific CD8 T cells, neglecting the synergistic effects of co-stimulatory signal. To address this, we developed a soft particle-stabilized emulsion (SPE) to deliver lipopeptides with controlled release profiles by adjusting their hydrophobic chain lengths: C-SPE (fast release), C-SPE (medium release), and C-SPE (slow release).
View Article and Find Full Text PDFUnder mild reaction conditions, we synthesized diblock copolymers of poly(9,9-dioctylfluorene)--poly(ethylene oxide) (PFO--PEO) end-capping poly(9,9-dioctylfluorene) (PFO) with poly(ethylene oxide) (PEO) on one end. We investigated the thermal, optical, electrochemical and crystalline properties as well as electron transport performance of these polymers. Our results demonstrate that PFO--PEO diblock copolymers with short PEO chains ( = 1000 and 2000 g mol) exhibit higher electron mobilities compared to the PFO homopolymer and longer PEO chain ( = 4000 g mol) attached copolymers.
View Article and Find Full Text PDFPoly(9,9-di--octylfluorene) (PFO) is a promising material for polymer light-emitting diodes (PLEDs) due to its advantageous properties. To enhance its electron transporting capabilities, diblock polymers were synthesized by attaching polystyrene (PSt) chains of varying lengths to one end of the PFO molecule. In a comparative study with PFO homopolymer, the diblock polymers maintained similar thermal properties, absorption spectra, and photoluminescent stability, while exhibiting slightly deeper lowest unoccupied molecular orbital (LUMO) levels and higher crystallinity.
View Article and Find Full Text PDFAs a product of hydrothermal carbonization (HTC) technology, hydrothermal carbon has shown excellent application potential in soil improvement, greenhouse gas reduction and pollution remediation. Since a large amount of water and biomass are directly used as reaction media, hydrothermal carbon produced by traditional HTC possesses poor nutrient properties and accompanied by the generation of toxic and hazardous wastewater. Here, a versatile and easily scalable strategy has been demonstrated for the one-step production of industrial nutrient-rich hydrothermal carbon (NRHC) by combining the exogenous nutrients with seaweed internal water.
View Article and Find Full Text PDFTherapeutic cancer vaccines are considered as one of the most cost-effective ways to eliminate cancer cells. Although many efforts have been invested into improving their therapeutic effect, transient maturation and activations of dendritic cells (DCs) cause weak responses and hamper the subsequent T cell responses. Here, we report on an alum-stabilized (APE) that can load a high number of antigens and continue to release them for extensive maturation and activations of antigen-presenting cells (APCs).
View Article and Find Full Text PDFSignal Transduct Target Ther
May 2023
Current attempts in vaccine delivery systems concentrate on replicating the natural dissemination of live pathogens, but neglect that pathogens evolve to evade the immune system rather than to provoke it. In the case of enveloped RNA viruses, it is the natural dissemination of nucleocapsid protein (NP, core antigen) and surface antigen that delays NP exposure to immune surveillance. Here, we report a multi-layered aluminum hydroxide-stabilized emulsion (MASE) to dictate the delivery sequence of the antigens.
View Article and Find Full Text PDFReturning straw-like agricultural waste to the field by converting it into hydrochar through hydrothermal carbonization (HTC) is an important way to realize resource utilization of waste, soil improvement, and carbon sequestration. However, the large-scale HTC is highly limited by the large water consumption and waste liquid pollution. Here, we propose strategies to optimize the liquid-solid ratio (LSR) of HTC, and comprehensively evaluate the stability, soil application potential, and economic benefits of corn stover-based hydrochar under different LSRs.
View Article and Find Full Text PDFThe cellular affinity of micro-/nanoparticles is the precondition for cellular recognition, cellular uptake, and activation, which are essential for drug delivery and immune response. The present study stemmed from the observation that the effects of charge, size, and shape of solid particles on cell affinity are usually considered, but we seldom realize the essential role of softness, dynamic restructuring phenomenon, and complex interface interaction in cellular affinity. Here, we developed poly-lactic-co-glycolic acid (PLGA) nanoparticle-stabilized Pickering emulsion (PNPE) that overcame the shortcomings of rigid forms and simulated the flexibility and fluidity of pathogens.
View Article and Find Full Text PDFAs the acidification of arable soils increases, the utilization of nutrient ions such as N, P, and K decreases substantially. It causes environmental pollution and reduces crop yields. Through previous studies, acidified soil amendments have problems such as easy-retrograde and unclear mechanism.
View Article and Find Full Text PDFHypothesis: Inflammatory bowel disease (IBD) is a chronic inflammation disease and still faces many therapeutic challenges, such as ineffective treatments, antibiotic resistance, and systematic toxicity. In order to improve the therapeutic efficacy of IBD, it is thus urgent to develop efficient, non-toxic and conveniently-administrated nanoagents to replace the currently used medicines. Casein phosphopeptide (CPP) has been found capable of chelating transition metal ions to suppress reactive oxygen species (ROS) generation, showing the potential for the treatment of IBD.
View Article and Find Full Text PDFTriphenylamine derivates have been utilized as building blocks in hole-transporting materials. Herein, we describe the synthesis of three octyl-derived conjugated triphenylamine macrocycles with different sizes, and a 4-(2-ethylhexyloxy)-substituted cyclic triphenylamine hexamer using a palladium-catalyzed C-N coupling reaction. These conjugated triphenylamine macrocycles not only have interesting structures, but also are capable of complexing with C, C and PCBM.
View Article and Find Full Text PDFBeilstein J Nanotechnol
March 2022
Oxidative stress can lead to permanent and irreversible damage to cellular components and even cause cancer and other diseases. Therefore, the development of antioxidative reagents is an important strategy to alleviate chronic diseases and maintain the redox balance in cells. Small-molecule bioactive compounds have exhibited huge therapeutic potential as antioxidants and anti-inflammatory agents.
View Article and Find Full Text PDFThe side chains of macrocyclic molecules have a non-negligible effect on the two-dimensional (2D) supramolecular networks at the liquid-solid interface. In this study, we investigate the self-assembly behaviors of two conjugated triphenylamine macrocycles modified with different alkyl chains and construct the host-guest supramolecular nanopatterns on the highly oriented pyrolytic graphite with a scanning tunneling microscope. In combination with density functional theory calculations, how different side chains affect the host-guest interaction is discussed.
View Article and Find Full Text PDFXylooligosaccharides (XOS) are emerging prebiotic that may improve structural features of biopolymer blends. The investigation around the conformation of XOS into the matrix of alginate and gelatin clarifies the potential applications of this formulation in the food industry as texture modifiers or encapsulation systems. Structural properties verified by flow behavior, SEM, XRD, and FT-IR demonstrated that the add up to 3% XOS into the alginate-gelatin blend formed a cohesive matrix, with smaller pores and crystalline structure, confirming the potential of xylooligosaccharides hydrogels for the development of functional and synbiotic foods.
View Article and Find Full Text PDFEur J Pharm Biopharm
March 2021
Currently, the influences of free terminal groups (hydroxyl, carboxyl and ester) of PLGA on encapsulating active pharmaceutical ingredient are relatively ambiguous even though PLGA types were defined as critical quality attributes in vast majority of design of experiment process. In this study, emulsion method combined with premix membrane emulsification technique has been used to encapsulate ropivacaine (RVC), a small molecule local anesthetic in clinical. Based on the narrow particle size distribution, the influences and mechanisms of the terminal groups on properties of ropivacaine loaded microspheres have been investigated in detail.
View Article and Find Full Text PDFThe original synthetic strategy for a new type of poly(arylene vinylene) (PAV) is presented, where the C=C-bond-forming coupling of bis(alkoxycarbonyldiazomethyl)aromatic compounds is utilized as propagation. The strategy is unique in that the resulting PAVs have an alkoxycarbonyl group as an electron-withdrawing substituent on each vinylene carbon atom in the polymer main chain. Among the transition-metal catalysts examined in this study, RuCl(cod)Cp* (cod = 1,5-cyclooctadiene, Cp* = pentamethylcyclopentadienyl) is the most efficient, affording PAVs from a series of bis(alkoxycarbonyldiazomethyl)aromatic compounds with a high -C=C-forming selectivity of up to 90%.
View Article and Find Full Text PDFDes Monomers Polym
December 2019
Fast-drying traffic marking paint comprising a solvent-borne resin, a filler, a pigment and a solvent that is especially suitable for colder ambient (temperatures near freezing) applications, where waterborne traffic paint cannot be used. Acrylic resins based on methyl methacrylate, butyl acrylate, acrylic acid, and styrene were synthesized in different solvents using organic peroxide initiators such as peroxyester, peroxyketal, dialkylperoxide and azo. After polymerization, the molecular weight (M), polydispersity index = PDI (M/M), viscosity, total residual monomer and APHA color were evaluated and results of organic peroxide initiators (t-butyl and t-amyl derivatives) were compared with the azo initiator.
View Article and Find Full Text PDFPolyester fibers are used in various fields, due to their excellent mechanical and chemical stability. However, the lack of conductivity limits their application potential. In order to prepare conductive polyester fibers, silver is one of the most widely used materials to coat the surface of the fibers.
View Article and Find Full Text PDFThe generation of a flexible printed circuit board on polymer fabrics has been a challenge over the last decade. In this work, a copper pattern was obtained on a soft substrate of filter paper/polyacrylonitrile (FP/PAN) film, where the filter paper was commercially available. The pattern of Ag particles was first produced on an Ag⁺-doped FP/PAN composite film, followed by electroless plating of copper using the metal silver particles as seeds.
View Article and Find Full Text PDFMulticomponent polymer particles with specific morphology are promising materials exhibiting novel functionality which cannot be obtained with single-component polymer particles. Particularly, the preparation of such kinds of polymer particles involving electrically or optically active conjugated polymers with uniform size is a challenging subject due to their intense demands. Here, microspheres of binary polymer blend consisting of poly(4-butyltriphenylamine) (PBTPA)/poly(methyl methacrylate) (PMMA) (1:1 in weight) were produced via a microfluidic emulsification with a Y-shaped microreactor, and a subsequent solvent evaporation method.
View Article and Find Full Text PDFIt is widely recognized that fullerene derivatives show several advantages as n-type materials in photovoltaic applications. However, conventional [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) exhibits weak absorption in the visible region, and poor morphological stability, due to the facile aggregation. For further improvement of the device performance and durability, utilization of n-type polymeric materials instead of PCBM is considered to be a good way to solve the problems.
View Article and Find Full Text PDFThe color-changing phenomenon of hydrophobic bisazo dye, Sudan III in an acetonitrile solution against the addition of concentrated sulfuric acid has been discovered and the chromic properties investigated. Based on observations, a novel quantification method of concentrated sulfuric acid has been developed. Sudan III changes its color from orange to blue against a small volume of sulfuric acid, and the acetonitrile solution of Sudan III is the most suitable for observing the color-change phenomenon.
View Article and Find Full Text PDFA novel field sensing method for concentrated acid solutions was developed. The sensor is composed of a dye, Oil Red O, and florisil as a support for the dye. When the dye is supported on the florisil surface, its color change properties against the acid solution drastically changes compared to in solution, and the sensor is applicable to sensing for acids of relatively low concentration.
View Article and Find Full Text PDFSingle-molecule study of phenylenevinylene oligomers revealed distinct spectral forms due to different conjugation lengths which are determined by torsional defects. Large spectral jumps between different spectral forms were ascribed to torsional flips of a single phenylene ring. These spectral changes reflect the dynamic nature of electron delocalization in oligophenylenevinylenes and enable estimation of the phenylene torsional barriers.
View Article and Find Full Text PDF