The synthesis and structure-activity relationships of 6-carboxy-2-isopropylamino-5,7-diarylcyclopenteno[1,2-b]pyridine class of ET(A) receptor selective antagonists were described. These derivatives were prepared from the optically active key intermediates (3, 4, 10, and 13). Optimization of the substituent at the 2-position of the bottom 4-methoxyphenyl ring of the lead compound 1 led to identification of 2-hydroxy-1-methylethoxy (2g and h), hydroxyalkyl (2i, m, and p), 3-methoxy-2-methylpropyl (2t and u), N-acetyl-N-methylaminomethyl (2v), and 2-(dimethylcarbamoyl)propyl (2w) derivatives that showed greater than 1000-fold selectivity for the ET(A) receptor over the ET(B) receptor with excellent binding affinity (IC(50)<0.
View Article and Find Full Text PDFSynthesis and structure-activity relationships of 2-substituted-5,7-diarylcyclopenteno[1,2-b]pyridine-6-carboxylic acids, a novel class of endothelin receptor antagonists, were described. Derivatization of a lead structure 1 (IC(50)=2.4nM, 170-fold selectivity) by incorporating a substituent such as an alkyl, alkoxy, alkylthio, or alkylamino group into the 2-position of the cyclopenteno[1,2-b]pyridine skeleton was achieved via the key intermediate 8.
View Article and Find Full Text PDFA convenient method for the synthesis of the title intermediate 4 was described. The key steps of this synthesis involved: (1) regioselective addition reaction of arylzinc reagent to quinolic anhydride in 42% isolated yield, (2) conversion of a ketoacid to an enone, which was achieved in 65% yield by intramolecular Knoevenagel reaction of beta-ketoester generated by condensation of an acid imidazolide with an ester enolate, followed by dehydration assisted with silica gel, and (3) stereoselective reduction of an allyl alcohol in 75% yield with zinc under acidic conditions. This synthesis enabled us to provide hundreds of grams of without chromatographic purification.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
August 2002
An asymmetric synthesis of a selective endothelin A receptor antagonist 1b is described. Asymmetric conjugate addition of aryllithium derived from 18 to the chiral oxazoline 17 followed by hydrolysis afforded 15 in 96% ee via purification as (S)-(-)-1-phenylethylamine salt. Pd(OAc)(2)/dppf (1,1'-bis(diphenylphosphino)ferrocene) catalyzed carbonylation followed by chemoselective addition of aryllithium derived from 23 which gave ketone 24.
View Article and Find Full Text PDFCompounds (2-5) with a 6-carboxy-5,7-diarylcyclopentenopyridine skeleton were designed, synthesized, and identified as a new class of potent non-peptide endothelin receptor antagonists. The regio-isomer 2 was found to show potent inhibitory activity with an IC(50) value of 2.4 nM against (125)I-labeled ET-1 binding to human ET(A) receptors and a 170-fold selectivity for ET(A) over ET(B) receptors.
View Article and Find Full Text PDF