The consistent production of high-quality cells in cell therapy highlights the potential of automated manufacturing. Humanoid robots are a useful option for transferring technology to automate human cell cultures. This study evaluated a robotic cell-processing facility (R-CPF) for clinical research on retinal cell therapy, incorporating the versatile humanoid robot Maholo LabDroid and an All-in-One CP unit.
View Article and Find Full Text PDFInduced differentiation is one of the most experience- and skill-dependent experimental processes in regenerative medicine, and establishing optimal conditions often takes years. We developed a robotic AI system with a batch Bayesian optimization algorithm that autonomously induces the differentiation of induced pluripotent stem cell-derived retinal pigment epithelial (iPSC-RPE) cells. From 200 million possible parameter combinations, the system performed cell culture in 143 different conditions in 111 days, resulting in 88% better iPSC-RPE production than that obtained by the pre-optimized culture in terms of the pigmentation scores.
View Article and Find Full Text PDFCell culturing is a basic experimental technique in cell biology and medical science. However, culturing high-quality cells with a high degree of reproducibility relies heavily on expert skills and tacit knowledge, and it is not straightforward to scale the production process due to the education bottleneck. Although many automated culture systems have been developed and a few have succeeded in mass production environments, very few robots are permissive of frequent protocol changes, which are often required in basic research environments.
View Article and Find Full Text PDF