Publications by authors named "Kenji Kurita"

Palladium-catalyzed cross-couplings remain among the most robust methodologies to form carbon-carbon and carbon-heteroatom bonds. In particular, carbon-nitrogen (C-N) couplings (Buchwald-Hartwig aminations) find widespread use in fine chemicals industries. The use of base in these reactions is critical for catalyst activation and proton sequestration.

View Article and Find Full Text PDF

Water or moisture content in human stool samples is an important parameter for bioanalytical and clinical purposes. For bioanalytical use, accurate quantitation of water content in stool can provide the extent of dilution within the stool sample which can further be used for absolute quantitation of various stool based biomarkers. For clinical use, water or moisture content in stool is an important indicator of gastrointestinal health, and its accurate determination can enable quantitative assessment of the Bristol Stool Form Scale.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are designed by chemically linking highly potent cytotoxic small molecule drugs to monoclonal antibodies of unique specificity for targeted destruction of cancer cells. This innovative class of molecules incurs unique developmental challenges due to its structural complexity of having both small molecule and protein components. The stability of the small molecule payload on the ADC is a critical attribute as it directly relates to product efficacy and patient safety.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical technique with the ability to acquire both quantitative and structurally insightful data for multiple components in a test sample. This makes NMR spectroscopy a desirable tool to understand, monitor, and optimize chemical transformations. While quantitative NMR (qNMR) approaches relying on internal standards are well-established, using an absolute external calibration scheme is beneficial for reaction monitoring as resonance overlap complications from an added reference material to the sample can be avoided.

View Article and Find Full Text PDF

Externally calibrated quantitative nuclear magnetic resonance (NMR) approaches offer practical means to simultaneously evaluate chemical identity and content without the addition of calibrants to the test sample. Despite continuous advances in external calibration over the last few decades, adoption of these approaches has been slower than expected. Variations in NMR tube geometry are a commonly overlooked factor that can have a substantial effect on externally calibrated quantitation methods.

View Article and Find Full Text PDF

Accurate sequencing of single guide RNAs (sgRNAs) for CRISPR/Cas9 genome editing is critical for patient safety, as the sgRNA guides the Cas9 nuclease to target site-specific cleavages in DNA. An approach to fully sequence sgRNA using protective DNA primers followed by ribonuclease (RNase) T1 digestion was developed to facilitate the analysis of these larger molecules by hydrophilic interaction liquid chromatography coupled with high-resolution mass spectrometry (HILIC-HRMS). Without RNase digestion, top-down mass spectrometry alone struggles to properly fragment precursor ions in large RNA oligonucleotides to provide confidence in sequence coverage.

View Article and Find Full Text PDF

Typical chromatographic analysis of chiral compounds requires the use of achiral methods to evaluate impurities or related substances along with separate methods to evaluate chiral purity. The use of two-dimensional liquid chromatography (2D-LC) to support simultaneous achiral-chiral analysis has become increasingly advantageous in the field of high-throughput experimentation where low reaction yields or side reactions can lead to challenging direct chiral analysis. Advancements in multi-dimensional chromatography have led to the development of robust 2D-LC instrumentation with reversed phase solvent systems (RPLC-RPLC) enabling this simultaneous analysis, eliminating the need to purify crude reaction mixtures to determine stereoselectivity.

View Article and Find Full Text PDF

Determining mechanism of action (MOA) is one of the biggest challenges in natural products discovery. Here, we report a comprehensive platform that uses Similarity Network Fusion (SNF) to improve MOA predictions by integrating data from the cytological profiling high-content imaging platform and the gene expression platform Functional Signature Ontology, and pairs these data with untargeted metabolomics analysis for de novo bioactive compound discovery. The predictive value of the integrative approach was assessed using a library of target-annotated small molecules as benchmarks.

View Article and Find Full Text PDF

Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a type of mitochondrial disease that is characterized by stroke-like seizures. For these patients, serious, unexpected complications have occurred during and following anesthetic exposure. Provision of anesthesia is challenging, including the choice of anesthetic agents.

View Article and Find Full Text PDF

In pharmaceutical development, structural elucidation of small molecules from process related impurities and degradation products is an essential component. As one of the most important methods in the toolbox, high resolution mass spectrometry (HRMS) and specifically tandem mass spectrometry (MS/MS) often provide fast and informative structural insights. However, many small molecule drugs containing certain biological relevant pharmacophores result in limited numbers of fragments when using traditional collision based fragmentation techniques, such as higher energy collisional dissociation (HCD), due to its inherent preference of cleaving the weakest bond first.

View Article and Find Full Text PDF

In this study, for the first time, the automated digestion and sequencing of an RNA molecule the use of immobilized RNase cartridges attached to a multidimensional liquid chromatography (LC)-mass spectrometry (MS) system are presented. We first developed an on-line digestion-HILIC two-dimensional (2D)-LC-MS method in order to sequence CRISPR guide RNAs for gene editing. Three RNases (T1, A, and U2) were immobilized on polyetheretherketone cartridges, and their performance was evaluated.

View Article and Find Full Text PDF

CRISPR/Cas9 is a powerful genome editing approach in which a Cas9 enzyme and a single guide RNA (sgRNA) form a ribonucleoprotein complex effectively targeting site-specific cleavages of DNA. Accurate sequencing of sgRNA is critical to patient safety and is the expectation by regulatory agencies. In this paper, we present the full sequencing of sgRNA via parallel ribonuclease (RNase) T1, A, and U2 digestions and the simultaneous separation and identification of the digestion products by hydrophilic interaction liquid chromatography (HILIC) coupled to high-resolution mass spectrometry (HRMS).

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how the skin microbiota varies between individuals and seeks to understand the molecular factors behind this variability, specifically at the strain level.
  • Researchers used genomics to identify a biosynthetic gene cluster in a common skin bacterium, leading to the discovery of a new antibiotic called cutimycin.
  • The findings suggest that cutimycin plays a role in the skin microbiome by helping control the population of certain bacteria in human skin hair follicles.
View Article and Find Full Text PDF

Salinipostin A (Sal A) is a potent antiplasmodial marine natural product with an undefined mechanism of action. Using a Sal A-derived activity-based probe, we identify its targets in the Plasmodium falciparum parasite. All of the identified proteins contain α/β serine hydrolase domains and several are essential for parasite growth.

View Article and Find Full Text PDF

As part of an ongoing program to identify sex attractant pheromone components that mediate sexual communication in yellowjacket wasps, a novel sesquiterpene was isolated from body surface extracts of virgin bald-faced hornet queens, . The gross structure of this sesquiterpene was proposed through microscale spectroscopic analyses, and the configuration of the central olefin was subsequently confirmed by total synthesis. This new natural product (termed here dolichovespulide) represents an important addition to the relatively small number of terpenoids reported from the taxonomic insect family Vespidae.

View Article and Find Full Text PDF

The genus Burkholderia is an emerging source of novel natural products chemistry, yet to date few methods exist for the selective isolation of strains of this genus from the environment. More broadly, tools to efficiently design selection media for any given genus would be of significant value to the natural products and microbiology communities. Using a modification of the recently published SMART protocol, we have developed a two-stage isolation protocol for strains from the genus Burkholderia.

View Article and Find Full Text PDF

It is highly desirable to have a universal detector that can detect all types of compounds and give a uniform response regardless of the physiochemical properties of the compounds. With such a universal detector, all components in a sample can be accurately quantified without the need for individual standards. This is especially needed for the characterization of unknowns and for non-targeted analysis, or for samples that have no isolated standards available for each component.

View Article and Find Full Text PDF

Yellowjackets in the genera Vespula and Dolichovespula are prevalent eusocial insects of great ecological and economic significance, but the chemical signals of their sexual communication systems have defied structural elucidation. Herein, we report the identification of sex attractant pheromone components of virgin bald-faced hornet queens (Dolichovespula maculata). We analyzed body surface extracts of queens by coupled gas chromatographic-electroantennographic detection (GC-EAD), isolated the compounds that elicited responses from male antennae by high-performance liquid chromatography (HPLC), and identified these components by GC mass spectrometry (MS), HPLC-MS, and NMR spectroscopy.

View Article and Find Full Text PDF

Herein, we report our synthetic studies toward the skyllamycins, a highly modified class of nonribosomal peptide natural products which contain a number of interesting structural features, including the extremely rare α-OH-glycine residue. Before embarking on the synthesis of the natural products, we prepared four structurally simpler analogues. Access to both the analogues and the natural products first required the synthesis of a number of nonproteinogenic amino acids, including three β-OH amino acids that were accessed from the convenient chiral precursor Garner's aldehyde.

View Article and Find Full Text PDF

The skyllamycins are a family of highly functionalized non-ribosomal cyclic depsipeptide natural products which contain the extremely rare α-OH-glycine functionality. Herein the first total synthesis of skyllamycins A-C is reported, together with the biofilm inhibitory activity of the natural products. Linear peptide precursors for each natural product were prepared through an efficient solid-phase route incorporating a number of synthetic modified amino acids.

View Article and Find Full Text PDF

Thyroid hormone receptor interactor 13 (TRIP13) is a member of the ATPases associated with various cellular activities family of proteins and is highly conserved in a wide range of species. Recent studies have demonstrated that TRIP13 is critical for the inactivation of the spindle assembly checkpoint and is associated with the progression of certain cancers. In the present study, the role of TRIP13 in colorectal cancer (CRC) was examined.

View Article and Find Full Text PDF

Cyanobacteria possess a unique capacity for the production of structurally novel secondary metabolites compared to the biosynthetic abilities of other environmental prokaryotes such as bacteria of the genus Streptomyces. Two different strategies to explore cyanobacteria-derived natural products have been explored previously: (1) cultivation of single cyanobacterial strains, in bioreactors for example; (2) bulk collections from the environment of so called 'algal blooms' that are dominated by cyanobacteria. In this study a new environmentally friendly collection technique for obtaining large quantities of algal bloom biomass was utilized.

View Article and Find Full Text PDF

The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry (MS) techniques are well-suited to high-throughput characterization of NP, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social Molecular Networking (GNPS; http://gnps.

View Article and Find Full Text PDF

Traditional natural products discovery using a combination of live/dead screening followed by iterative bioassay-guided fractionation affords no information about compound structure or mode of action until late in the discovery process. This leads to high rates of rediscovery and low probabilities of finding compounds with unique biological and/or chemical properties. By integrating image-based phenotypic screening in HeLa cells with high-resolution untargeted metabolomics analysis, we have developed a new platform, termed Compound Activity Mapping, that is capable of directly predicting the identities and modes of action of bioactive constituents for any complex natural product extract library.

View Article and Find Full Text PDF

In recent years, the field of natural products has seen an explosion in the breadth, resolution, and accuracy of profiling platforms for compound discovery, including many new chemical and biological annotation methods. With these new tools come opportunities to examine extract libraries using systematized profiling approaches that were not previously available to the field and which offer new approaches for the detailed characterization of the chemical and biological attributes of complex natural products mixtures. This review will present a summary of some of these untargeted profiling methods and provide perspective on the future opportunities offered by integrating these tools for novel natural products discovery.

View Article and Find Full Text PDF