In recent years, organometal halide perovskite-based solid-state hybrid solar cells have attracted unexpected increasing interest because of their high efficiency (the record power conversion efficiency has been reported to be over 15%) and low fabrication cost. It has been accepted that the high efficiency was mainly attributed to the strong optical absorption (absorption coefficient: 15,000 cm(-1) at 550 nm) over a broader range (up to 800 nm) and the long lifetimes of photoexcited charge carriers (in the order of 10 ns - a few 100 ns) of the perovskite absorbers. However, much of the fundamental photophysical properties of perovskite relating to the high photovoltaic performance are remained to be investigated.
View Article and Find Full Text PDFThe relationship between the structure of the charge-separation interface and the photovoltaic performance of all-solid dye-sensitized solar cells is reported. This cell is composed of porous a TiO2/perovskite (CH3NH3PbI(x)Cl(3-x))/p-type organic conductor. The porous titania layer was passivated with Al2O3 or Y2O3 to remove surface traps of the porous titania layer.
View Article and Find Full Text PDF