We explore the synergistic effects of TiO underlayers and varied alcohol species in the precursor solutions on the photoelectrochemical (PEC) performance of hematite photoanodes. Utilizing a robust machine learning (ML) framework combined with comprehensive analytical data sets, we systematically investigate how these modifications influence key physical and chemical properties, directly impacting the efficiency of water splitting processes. Our approach employs an ML model that integrates SHapley Additive exPlanations (SHAP) to quantitatively assess the impact of each dominant descriptor selected in the analytical data on the PEC performance, and they were combined with the SHAP values' dependence on the experimental operations.
View Article and Find Full Text PDFSoft materials that respond to external stimuli are promising candidates for next-generation actuators with human-friendly nature. Among various stimuli to induce strain, light offers spatial selectivity, which allows versatile motion of a continuous body. However, spatial selectivity of photoactuation has been limited in two dimension due to the predominant absorption of photons by chromophores near a light source in accordance with Beer-Lambert law.
View Article and Find Full Text PDFThis study investigates the phenomenon of solute uptake into liquid crystal (LC) droplets, illuminated under UV light, focusing on the role of 4-cyano-4'-pentylbiphenyl (5CB) excimer formation in this process. Our experiments reveal that upon UV irradiation solute molecules, including surfactants and dyes, are actively drawn into the LC phase, forming distinctive assemblies within the droplets. Contrary to previous assumptions that the uptake was driven by the direct photoreactivity of the solutes, we found that the 5CB excimer state plays a critical role for this phenomenon.
View Article and Find Full Text PDFActivating metal ion-doped oxides as visible-light-responsive photocatalysts requires intricate structural and electronic engineering, a task with inherent challenges. In this study, we employed a solid (template)-molten (dopants) reaction to synthesize Bi- and Rh-codoped SrTiO (SrTiO : Bi,Rh) particles. Our investigation reveals that SrTiO : Bi,Rh manifests as single-crystalline particles in a core (undoped)/shell (doped) structure.
View Article and Find Full Text PDFMachine learning (ML) is increasingly applied across various fields, including chemistry, for molecular design and optimizing reaction parameters. Yet, applying ML to experimental data is challenging due to the limited number of synthesized samples, which restricts its broader application in device development. In energy harvesting, photoanodes are crucial for solar-driven water splitting, generating hydrogen and oxygen.
View Article and Find Full Text PDFThis study investigates the optimization of hematite (α-FeO) photoanodes for enhanced photoelectrochemical (PEC) performance and reproducibility, which are crucial for photocatalytic applications. Despite hematite's potential, hindered by inherent limitations, significant improvements were realized by introducing a titanium dioxide (TiO) underlayer and ethanol-modified deposition. The influence of the deposition methods was understood by potential-dependent photoelectrochemical impedance spectroscopy analysis.
View Article and Find Full Text PDFPhotocatalytic water-splitting represents a promising avenue for clean hydrogen production, necessitating an in-depth understanding of the photocatalytic reaction mechanism. The majority of the photocatalytic materials need cocatalysts to enhance the photo-oxidation or reduction reactions. However, the working mechanism, such as collecting charge carriers or reducing the reaction barrier, is not clear because they disperse inhomogeneously on a surface, and it is difficult to follow the local charge carrier behavior.
View Article and Find Full Text PDFPattern-illumination time-resolved phase microscopy (PI-PM) is a technique used to study the microscopic charge carrier dynamics in photocatalytic and photovoltaic materials. The method involves illuminating a sample with a pump light pattern, which generates charge carriers and they decay subsequently due to trapping, recombination, and transfer processes. The distribution of photo-excited charge carriers is observed through refractive index changes using phase-contrast imaging.
View Article and Find Full Text PDFHematite has gained significant attention in the field of photocatalysis as one of the most promising materials for the photoanode of photoelectrochemical (PEC) water splitting due to visible light absorption and the abundance of availability. However, its performance improvement process suffers from a serious bottleneck due to "sample variation" and "inactivity". However, the physical origin of them has not yet been elucidated.
View Article and Find Full Text PDFA phenotyping pipeline utilising DeepLab was developed for precisely estimating the height, volume, coverage and vegetation indices of European and Japanese varieties. Using this pipeline, the effect of varying UAV height on the precise estimation of potato crop growth properties was evaluated. A UAV fitted with a multispectral camera was flown at a height of 15 m and 30 m in an experimental field where various varieties of potatoes were grown.
View Article and Find Full Text PDFTopological defects, the fundamental entities arising from symmetry-breaking, have captivated the attention of physicists, mathematicians, and materials scientists for decades. Here we propose and demonstrate a novel method for robust control of topological defects in a liquid crystal (LC), an ideal testbed for the investigation of topological defects. A liquid layer is introduced on the LC in microwells in a microfluidic device.
View Article and Find Full Text PDFThe demands for cost-effective solar fuels have triggered extensive research in artificial photosynthesis, yet the efforts in designing high-performance particulate photocatalysts are largely impeded by inefficient charge separation. Because charge separation in a particulate photocatalyst is driven by asymmetric interfacial energetics between its reduction and oxidation sites, enhancing this process demands nanoscale tuning of interfacial energetics on the prerequisite of not impairing the kinetics and selectivity for surface reactions. In this study, we realize this target with a general strategy involving the application of a core/shell type cocatalyst that is demonstrated on various photocatalytic systems.
View Article and Find Full Text PDFVisible-light responsive photocatalytic materials are expected to be deployed for practical use in photocatalytic water splitting. One of the promising materials as a p-type semiconductor, oxysulfides, was investigated in terms of the local charge carrier behavior for each particle by using a home-built time-resolved microscopic technique in combination with clustering analysis. We could differentiate electron and hole trapping to the surface states and the following recombination on a micron-scale from the nanosecond to microsecond order.
View Article and Find Full Text PDFMachine learning (ML) has been extensively utilized in various fields of chemistry, such as molecular design and optimization of the fabrication parameters of the material. However, there is still a difficulty in applying ML for devices/materials fabricated in a lab because plenty of data for accurate calculation are difficult to obtain due to the limited number of samples. As a promising energy-harvesting material, we have studied hematite electrodes for photocatalytic water splitting.
View Article and Find Full Text PDFArtificial photosynthesis of HO using earth-abundant water and oxygen is a promising approach to achieve scalable and cost-effective solar fuel production. Recent studies on this topic have made significant progress, yet are mainly focused on using organic polymers. This set of photocatalysts is susceptible to potent oxidants (e.
View Article and Find Full Text PDFPhotocontrollable crystallization at topological defects in a liquid crystal (LC) droplet was demonstrated. The molecules dissolved in a surfactant solution outside the LC droplet were moved into the droplet via light absorption. Nuclei emerged tens of seconds after light irradiation and moved toward the topological defect located at the droplet center, thus forming a branch-shaped crystal.
View Article and Find Full Text PDFThe initial processes of the phase transition dynamics of liquid crystals (LCs) subject to UV pulse irradiation were clarified using a nanosecond time-resolved imaging technique called pattern-illumination time-resolved phase microscopy (PI-PM). Two types of LCs were studied: a photo-responsive LC and dye-doped LCs. We found two steps of molecular disordering processes in the phase transition, namely local disordering proceeding anisotropically, followed by the spreading of the isotropic phase.
View Article and Find Full Text PDFPhotocatalytic water splitting system using particulate semiconductor materials is a promising strategy for converting solar energy into hydrogen and oxygen. In particular, visible-light-driven 'Z-scheme' printable photocatalyst sheets are cost-effective and scalable. However, little is known about the fundamental photophysical processes, which are key to explaining and promoting the photoactivity.
View Article and Find Full Text PDFPotato (Solanum tuberosum L.) and sweetpotato (Ipomoea batatas L.), which are nutritionally and commercially important tuberous crops, possess a perplexing heredity because of their autopolyploid genomes.
View Article and Find Full Text PDFTopological defects in liquid crystals (LCs) dominate molecular alignment/motion in many cases. Here, the neural network (NN) function has been introduced to predict the LC orientation condition (orientation angle and order parameter) at local positions around topological defects from the phase/polarization microscopic color images. The NN function was trained in advance by using the color information of an LC in a planar alignment cell for different orientation angles and temperatures.
View Article and Find Full Text PDFA nanosecond time-resolved imaging technique has been developed for the observation of the photo-excited charge carrier dynamics in photo-devices such as photocatalysts and solar cells. An arbitrary spatial pattern of pump pulse light excites the charge carriers, which are observed by phase-contrast imaging. This patterned excitation is preferable for various statistical image reconstruction techniques based on robust principal component analysis and the least absolute shrinkage and selection operator, which helped the enhancement of the signal-to-noise ratio and the removal of unwanted image components.
View Article and Find Full Text PDFA photo-controllable rotational motion was demonstrated for an isolated cholesteric liquid crystalline droplet in a surfactant solution. The droplet showed unidirectional rigid-body rotation with UV light irradiation and the rotational rate could be controlled by the light intensity. Furthermore, the rotational direction could be controlled by the chirality of dopants.
View Article and Find Full Text PDFMultivariate curve resolution (MCR) has been widely utilized to reveal the constituents of chemicals from multiple spectral data of chemical mixtures. In the MCR calculation, the singular value decomposition (SVD) has been utilized to obtain the initial estimation of the spectra for pure chemicals and they are adjusted to obtain the best fit using the alternating least squares (ALS) algorithm. However, wrong initial estimation by SVD frequently leads to convergence at an incorrect local minimum of the least square error.
View Article and Find Full Text PDF