Publications by authors named "Kenji Handa"

Antibodies often have poor physicochemical stability during storage and transport, which is a serious drawback for the development of antibody-based drugs. In this study, we prepared polypseudorotaxane (PPRX) hydrogels consisting of cyclodextrins (CyDs) and polyethylene glycol, and evaluated them as stabilizers for commercially available antibody-based drugs. α-CyD and γ-CyD formed PPRX hydrogels with polyethylene glycol (molecular weight 20,000 Da) in the presence of antibody-based drugs such as omalizumab, palivizumab, panitumumab, and ranibizumab.

View Article and Find Full Text PDF

The stabilization of antibodies in aqueous solution against physical stress remains a problematic issue for pharmaceutical applications. Recently, protein-polyelectrolyte complex (PPC) formation using poly(amino acids) was proposed to prepare antibody formulation in a salt-dissociable precipitated state without protein denaturation. Here, we investigated the stabilization effect of PPC of therapeutic antibodies with poly-l-glutamic acid on agitation and thermal stress as forms of mechanical and non-mechanical stress, respectively.

View Article and Find Full Text PDF

Long-term storage in aqueous solution has been demanded for the practical application of therapeutic proteins. Recently, a precipitation-redissolution method was proposed to prepare salt-dissociable protein-polyelectrolyte complex (PPC). To elucidate the utility of the complex for storage of proteins, we investigated the stress tolerance of PPC precipitates containing l-asparaginase (ASNase) and poly-l-lysine (polyK).

View Article and Find Full Text PDF

Development of high-concentration antibody formulations for subcutaneous administration remains challenging. Recently, a precipitation-redissolution method was proposed to prepare suspensions or precipitates of salt-dissociable protein-poly(amino acid) complexes. To elucidate the utility of this method for protein therapy, we investigated the feasibility of a precipitation-redissolution method using poly(amino acid) for high-concentration antibody formulation.

View Article and Find Full Text PDF

To achieve the potent therapeutic effects of human immunoglobulin G (IgG), highly concentrated formulations are required. However, the stabilization for highly concentrated human IgG is laborious work. In the present study, to investigate the potentials of polypseudorotaxane (PPRX) hydrogels consisting of polyethylene glycol (PEG) and α- or γ-cyclodextrin (α- or γ-CyD) as pharmaceutical materials for highly concentrated human IgG, we designed the PPRX hydrogels including human IgG and evaluated their pharmaceutical properties.

View Article and Find Full Text PDF

A method for concentration of protein solutions is required for high-dosage protein formulation. Here, we present a precipitation-redissolution method by poly(amino acid) for proteins, including therapeutic enzymes, antibodies, and hormones. The proteins were fully precipitated by the addition of poly-L-lysine or poly-L-glutamic acid at low ionic strength, after which precipitate was dissolved at physiological ionic strength.

View Article and Find Full Text PDF