Biol Blood Marrow Transplant
July 2019
Allogenic hematopoietic stem cell transplantation (HSCT) has proven to be a viable treatment option for a selected group of patients with mucopolysaccharidoses (MPS), including those with MPS types I, II, IVA, VI, and VII. Early diagnosis and timely referral to an expert in MPS are critical, followed by a complete examination and evaluation by a multidisciplinary team, including a transplantation physician. Treatment recommendations for MPS are based on multiple biological, sociological, and financial factors, including type of MPS, clinical severity, prognosis, present clinical signs and symptoms (disease stage), age at onset, rate of progression, family factors and expectations, financial burden, feasibility, availability, risks and benefits of available therapies such as HSCT, enzyme replacement therapy (ERT), surgical interventions, and other supportive care.
View Article and Find Full Text PDFIntroduction: Mucopolysaccharidosis Type II (MPS II; Hunter syndrome) is an X- linked lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase (IDS). IDS deficiency leads to primary accumulation of dermatan sulfate (DS) and heparan sulfate (HS). MPS II is both multi-systemic and progressive.
View Article and Find Full Text PDFBiol Blood Marrow Transplant
October 2017
There is limited information regarding the long-term outcomes of hematopoietic stem cell transplantation (HSCT) for mucopolysaccharidosis II (MPS II). In this study, clinical, biochemical, and radiologic findings were assessed in patients who underwent HSCT and/or enzyme replacement therapy (ERT). Demographic data for 146 HSCT patients were collected from 27 new cases and 119 published cases and were compared with 51 ERT and 15 untreated cases.
View Article and Find Full Text PDFThe aim of this study was to obtain data about the epidemiology of the different types of mucopolysaccharidoses in Japan and Switzerland and to compare with similar data from other countries. Data for Japan was collected between 1982 and 2009, and 467 cases with MPS were identified. The combined birth prevalence was 1.
View Article and Find Full Text PDFIntroduction: Morquio A syndrome is characterized by a unique skeletal dysplasia, leading to short neck and trunk, pectus carinatum, laxity of joints, kyphoscoliosis, and tracheal obstruction. Cervical spinal cord compression/inability, a restrictive and obstructive airway, and/or bone deformity and imbalance of growth, are life-threatening to Morquio A patients, leading to a high morbidity and mortality. It is critical to review the current therapeutic approaches with respect to their efficacy and limitations.
View Article and Find Full Text PDFKeratan sulfate (KS) is a storage material in mucopolysaccharidosis IV (MPS IV). However, no detailed analysis has been reported on subclasses of KS: mono-sulfated KS and di-sulfated KS. We established a novel method to distinguish and quantify mono- and di-sulfated KS using liquid chromatography-tandem mass spectrometry and measured both KS levels in various specimens.
View Article and Find Full Text PDFPatients with mucopolysaccharidoses (MPS) have accumulation of glycosaminoglycans in multiple tissues which may cause coarse facial features, mental retardation, recurrent ear and nose infections, inguinal and umbilical hernias, hepatosplenomegaly, and skeletal deformities. Clinical features related to bone lesions may include marked short stature, cervical stenosis, pectus carinatum, small lungs, joint rigidity (but laxity for MPS IV), kyphoscoliosis, lumbar gibbus, and genu valgum. Patients with MPS are often wheelchair-bound and physical handicaps increase with age as a result of progressive skeletal dysplasia, abnormal joint mobility, and osteoarthritis, leading to 1) stenosis of the upper cervical region, 2) restrictive small lung, 3) hip dysplasia, 4) restriction of joint movement, and 5) surgical complications.
View Article and Find Full Text PDFThe aim of this study was to assess the activities of daily living (ADL) in patients with Hunter syndrome (mucopolysaccharidosis II; MPS II) using a newly designed ADL questionnaire. We applied the questionnaire to evaluate clinical phenotypes and therapeutic efficacies of enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT). We also explored early signs and symptoms to make early diagnosis feasible.
View Article and Find Full Text PDFExpert Opin Orphan Drugs
October 2013
Introduction: Morquio A syndrome (mucopolysaccharidosis type IVA, MPS IVA) is one of the lysosomal storage diseases and is caused by the deficiency of -acetylgalactosamine-6-sulfate sulfatase (GALNS). Deficiency of this enzyme leads to accumulation of glycosaminoglycans (GAGs), keratan sulfate (KS) and chondroitin-6-sulfate (C6S). The majority of KS is produced by chondrocytes, and therefore, the undegraded substrates accumulate mainly in cells and extracelluar matrix (ECM) of cartilage.
View Article and Find Full Text PDFMucopolysaccharidoses (MPS) are caused by deficiency of one of a group of specific lysosomal enzymes, resulting in excessive accumulation of glycosaminoglycans (GAGs). We previously developed GAG assay methods using liquid chromatography tandem mass spectrometry (LC-MS/MS); however, it takes 4-5 min per sample for analysis. For the large numbers of samples in a screening program, a more rapid process is desirable.
View Article and Find Full Text PDFPatients with Hunter syndrome (mucopolysaccharidosis II) present with skeletal dysplasia including short stature as well as CNS and visceral organ involvement. A previous study on Hunter syndrome indicated an impact on brain and heart involvement after hematopoietic stem cell therapy (HSCT) at an early stage but little impact after enzyme replacement therapy (ERT) (Tanaka et al 2012). Meanwhile, impact on growth in patients with Hunter syndrome treated with ERT and HSCT has not been compared until now.
View Article and Find Full Text PDFChildren with mucopolysaccharidosis II (MPS II), also known as Hunter syndrome, an X-linked disorder, suffer from a multisystem dysfunction caused by the accumulation of glycosaminoglycans. However, there has been no systemic report on the growth of patients with MPS II. The purpose of this study is to describe the growth patterns of patients with MPS II and to compare with the patterns of age-matched controls.
View Article and Find Full Text PDFMucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is a lysosomal storage disorder caused by deficiency of N-acetylgalactosamine-6-sulfate sulfatase, which results in systemic accumulation of glycosaminoglycans (GAGs), keratan sulfate and chondroitin-6-sulfate. Accumulation of these GAGs causes characteristic features as disproportionate dwarfism associated with skeletal deformities, genu valgum, pigeon chest, joint laxity, and kyphoscoliosis. However, the pathological mechanism of systemic skeletal dysplasia and involvement of other tissues remain unanswered in the paucity of availability of an autopsied case and successive systemic analyses of multiple tissues.
View Article and Find Full Text PDFWe describe a case of the appearance of iodinated contrast agents in the same locations of twins' neonatal gastrointestinal tracts 1 day after maternal contrast-enhanced computed tomography (CT). The CT examination had been performed on the expectant mother for suspected deep venous thrombosis on the day previous to the twin delivery. At 23 h after the CT examination and after cesarean section, iodinated contrast agents appeared in the same place in the twins' neonatal gastrointestinal tracts, mainly in the ascending colon, on plain abdominal radiographs.
View Article and Find Full Text PDFPurpose: De novo STXBP1 mutations have been found in individuals with early infantile epileptic encephalopathy with suppression-burst pattern (EIEE). Our aim was to delineate the clinical spectrum of subjects with STXBP1 mutations, and to examine their biologic aspects.
Methods: STXBP1 was analyzed in 29 and 54 cases of cryptogenic EIEE and West syndrome, respectively, as a second cohort.
Fukuyama-type congenital muscular dystrophy (FCMD) is characterized by congenital muscular dystrophy and associated with neuropathological anomalies. However, the issue of whether the radiological findings of white-matter lesions represent delayed myelination, demyelination or other problems remains controversial. We present serial radiological findings, including MR spectroscopy (MRS), in a child with FCMD.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2009
Myeloid differentiating factor 88 (MyD88) and MyD88 adaptor-like (Mal) are adaptor molecules critically involved in the Toll-like receptor (TLR) 4 signaling pathway. While Mal has been proposed to serve as a membrane-sorting adaptor, MyD88 mediates signal transduction from activated TLR4 to downstream components. The Toll/Interleukin-1 receptor (TIR) domain of MyD88 is responsible for sorting and signaling via direct or indirect TIR-TIR interactions between Mal and TLR4.
View Article and Find Full Text PDFInactivation of homologous recombination (HR) or nonhomologous end-joining (NHEJ) predisposes to a spectrum of tumor types. Here, we inactivated DNA double-strand break repair (DSBR) proteins, DNA Ligase IV (Lig4), Xrcc2, and Brca2, or combined Lig4/Xrcc2 during neural development using Nestin-cre. In all cases, inactivation of these repair factors, together with p53 loss, led to rapid medulloblastoma formation.
View Article and Find Full Text PDFThe mitochondrial A3243G mutation is most commonly related to the MELAS syndrome, but can cause many different clinical manifestations at various ages. Here, we present a family with maternally inherited diabetes and deafness (MIDD), the proband of which exhibits hearing loss, diabetes mellitus, cardiomyopathy and short stature. Four easily accessible samples (whole blood, hair roots, buccal scrapings and urinary sediment) from the proband and her 3 sons were simultaneously analyzed for heteroplasmic percentages of the A3243G mutation in their DNA.
View Article and Find Full Text PDFThe human succinyl-CoA: 3-ketoacid CoA transferase (SCOT) gene encodes the ketolytic enzyme that functions in the mitochondrial matrix. The activation of acetoacetate to acetoacetyl-CoA by SCOT is essential for the use of ketone bodies as an energy source. The ketolytic capacity of tissues is proportional to their level of SCOT activity.
View Article and Find Full Text PDFThe repair of DNA double-strand breaks (DSBs) occurs via nonhomologous end-joining (NHEJ) or homologous recombination (HR). These mechanistically distinct pathways are critical for maintenance of genomic integrity and organismal survival. Although inactivation of either pathway leads to embryonic lethality, here we show selective requirements for each DNA DSB repair pathway at different stages of mammalian nervous system development.
View Article and Find Full Text PDFThe serial MR image and MR spectroscopy in the brain were examined in a young male diagnosed as having juvenile Alexander disease. He had megalencephaly, psychomotor retardation, seizures, and increasing elevation of increasing alpha-B crystallin and heat shock protein 27 in the cerebrospinal fluid. Serial MR images demonstrated increased demyelination of the bilateral frontal region to left occipital region over several years.
View Article and Find Full Text PDFTo evaluate the autonomic nervous system of patients with breath-holding spells after iron treatment, we attempted to determine whether a dysregulation of the autonomic nervous system reflexes exists in children with severe cyanotic breathholding spells. An electrocardiogram for each subject was recorded for 24 hours in the subject's home and parasympathetic activity was investigated by the fast Fourier transform method. Hematologic data and clinical symptoms of all three patients treated with iron improved and attacks of severe breath-holding spells disappeared.
View Article and Find Full Text PDF