Background: This study was a randomised, double-blind, placebo-controlled study intended to establish the translatability of the RLS-0071 mechanisms of action from animal disease models to humans by inhibiting neutrophil-mediated inflammation at the tissue level and major inflammatory biomarkers. We hypothesised that RLS-0071 inhibits a temporary neutrophil-mediated inflammation in the lungs induced by inhalation of low-dose lipopolysaccharide (LPS) in healthy participants.
Methods: Participants were randomised to one of three arms to receive inhaled LPS followed by three doses of either low-dose (10 mg·kg) or high-dose (120 mg·kg loading dose followed by two doses of 40 mg·kg) RLS-0071 or placebo (saline) every 8 h.
BACKGROUND RLS-0071 is a dual-targeting peptide developed for the regulation of humoral and cellular inflammation via inhibition of neutrophil effectors, including myeloperoxidase and neutrophil extracellular trap formation (NETosis). The safety, pharmacokinetics, and pharmacodynamics of single and multiple doses of RLS-0071 were evaluated in a first-in-human clinical trial in healthy volunteers. Myeloperoxidase is the major peroxidase enzyme present in neutrophilic granules and contributes to cellular inflammation.
View Article and Find Full Text PDFThe EPICC peptides are a family of peptides that have been developed from the sequence of the capsid protein of human astrovirus type 1 and previously shown to inhibit the classical and lectin pathways of complement. The EPICC peptides have been further optimized to increase aqueous solubility and identify additional mechanisms of action. Our laboratory has developed the lead EPICC molecule, PA-dPEG24 (also known as RLS-0071), which is composed of a 15 amino acid peptide with a C-terminal monodisperse 24-mer PEGylated moiety.
View Article and Find Full Text PDFAcute lung injury (ALI) often causes severe trauma that may progress to significant morbidity and mortality. ALI results from a combination of the underlying clinical condition of the patient (e.g.
View Article and Find Full Text PDFPerinatal hypoxic ischemic encephalopathy (HIE) remains a major contributor of infant death and long-term disability worldwide. The role played by the complement system in this ischemia-reperfusion injury remains poorly understood. In order to better understand the role of complement activation and other modifiable mechanisms of injury in HIE, we tested the dual-targeting anti-inflammatory peptide, RLS-0071 in an animal model of HIE.
View Article and Find Full Text PDFHerpes simplex virus type 1 (HSV-1) is a prevalent human pathogen primarily transmitted through skin-to-skin contact, especially on and around mucosal surfaces where there is contact with contaminated saliva during periods of viral shedding. It is estimated that 90% of adults worldwide have HSV-1 antibodies. Cutaneous HSV-1 infections are characterized by a sensation of tingling or numbness at the initial infection site followed by an eruption of vesicles and then painful ulcers with crusting.
View Article and Find Full Text PDFNeutrophils are recognized for their role in host defense against pathogens as well as inflammatory conditions mediated through many mechanisms including neutrophil extracellular trap (NET) formation and generation of reactive oxygen species (ROS). NETs are increasingly appreciated as a major contributor in autoimmune and inflammatory diseases such as cystic fibrosis. Myeloperoxidase (MPO), a key neutrophil granule enzyme mediates generation of hypochlorous acid which, when extracellular, can cause host tissue damage.
View Article and Find Full Text PDFA 14-year-old female patient with sickle cell disease developed a severe delayed hemolytic transfusion reaction (DHTR) leading to multiple transfusions and intensive care management. To better understand the extent to which the classical complement pathway was contributing to her DHTR, we utilized the complement hemolysis using human erythrocytes (CHUHE) assay and the classical complement pathway inhibitor, PIC1. Residual discarded de-identified plasma and erythrocytes from the patient obtained from routine phlebotomy was acquired.
View Article and Find Full Text PDFIntroduction: Autoimmune hemolytic anemia (AIHA) is a serious manifestation of systemic lupus erythematosus (SLE) associated with significant morbidity and mortality. In order to more fully understand the causative pathways, we utilized sera from subjects with SLE and active AIHA, or a history of AIHA, to evaluate the classical complement pathway, anti-erythrocyte antibodies, and immune complexes.
Methods: To evaluate antibody-mediated complement activation on the surface of erythrocytes, as occurs in AIHA, blood type O erythrocytes were incubated with sera from 19 subjects with SLE and a history of AIHA.
Background: Platelet refractoriness remains a challenging clinical dilemma although significant advancements have been made in identifying human leukocyte antigen (HLA) matched or HLA compatible units. Antiplatelet antibodies are the major risk factor for immune-mediated platelet refractoriness, yet the role of antibody-initiated complement-mediated platelet destruction remains poorly understood.
Study Design And Methods: Human complement-mediated opsonization and killing of platelets was assayed ex vivo using antibody-sensitized human platelets incubated with complement-sufficient human sera.
Acute transfusion reactions can manifest in many forms including acute hemolytic transfusion reaction, allergic reaction and transfusion-related acute lung injury. We previously developed an acute hemolytic transfusion reaction rat model mediated by transfusion of incompatible human erythrocytes against which rats have preexisting antibodies resulting in classical complement pathway mediated intravascular hemolysis. In this study, the acute hemolytic transfusion reaction model was adapted to yield an acute lung injury phenotype.
View Article and Find Full Text PDFBackground: A product of rational molecular design, PA-dPEG24 is the lead derivative of the PIC1 family of peptides with multiple functional abilities including classical complement pathway inhibition, myeloperoxidase inhibition, NET inhibition and antioxidant activity. PA-dPEG24 is composed of a sequence of 15 amino acid, IALILEPICCQERAA, and contains a monodisperse 24-mer PEGylated moiety at its C terminus to increase aqueous solubility. Here we explore a sarcosine substitution scan of the PA peptide to evaluate impacts on solubility in the absence of PEGylation and functional characteristics.
View Article and Find Full Text PDFWe report a case of ceftriaxone-induced immune hemolytic anemia in a 10-year-old with chronic active Epstein-Barr virus disease and hemophagocytic lymphohistiocytosis. After chemotherapy, she became febrile and received ceftriaxone. She rapidly developed respiratory failure and anemia.
View Article and Find Full Text PDFFungal infections are rare causes of acute surgical wound infections, but is not an infrequent etiology in chronic wound infections. species is a common cause of tinea capitis but has not been reported as a cause of neurosurgical wound infection. We report a case of causing a nonhealing surgical wound infection in a 14-year-old male after hemicraniectomy.
View Article and Find Full Text PDFTwo major aspects of systemic lupus erythematosus (SLE) pathogenesis that have yet to be targeted therapeutically are immune complex-initiated complement activation and neutrophil extracellular trap (NET) formation by neutrophils. Here, we report testing of peptide inhibitor of complement C1 (PIC1) in assays of immune complex-mediated complement activation in human sera and assays for NET formation by human neutrophils. The lead PIC1 derivative, PA-dPEG24, was able to dose-dependently inhibit complement activation initiated by multiple types of immune complexes (IC), including C1-anti-C1q IC, limiting the generation of pro-inflammatory complement effectors, including C5a and membrane attack complex (sC5b-9).
View Article and Find Full Text PDFReactive oxygen species (ROS) are natural byproducts of oxidative respiration that are toxic to organs and tissues. To mitigate ROS damage, organisms have evolved a variety of antioxidant systems to counteract these harmful molecules, however in certain pathological conditions these protective mechanisms can be overwhelmed. We have recently demonstrated that Peptide Inhibitor of Complement C1 (PIC1) mitigates peroxidase activity of the heme bearing proteins myeloperoxidase, hemoglobin, and myoglobin through a reversible process.
View Article and Find Full Text PDFHemoglobin is the natural carrier of oxygen in red blood cells (RBCs). While intracellular hemoglobin provides life-sustaining oxygen transport, extracellular free hemoglobin displays toxicity due to inherent peroxidase activity generating reactive oxygen species that subsequently react with the hemoglobin molecule to produce toxic heme degradation products resulting in free radicals, oxidative stress damage, and lipid peroxidation. We have recently demonstrated that Peptide Inhibitor of Complement C1 (PIC1) inhibits peroxidase activity of the heme-based enzyme myeloperoxidase.
View Article and Find Full Text PDFIn cystic fibrosis (CF), lung damage is mediated by a cycle of obstruction, infection, inflammation and tissue destruction. The complement system is a major mediator of inflammation for many diseases with the effectors C5a and C3a often playing important roles. We have previously shown in a small pilot study that CF sputum soluble fraction concentrations of C5a and C3a were associated with clinical measures of CF disease.
View Article and Find Full Text PDFMyeloperoxidase is the major peroxidase enzyme in neutrophil granules and implicated in contributing to inflammatory lung damage in cystic fibrosis. Free myeloperoxidase is present in cystic fibrosis lung fluid and generates hypochlorous acid. Here we report a new inhibitor of myeloperoxidase activity, Peptide Inhibitor of Complement C1 (PIC1).
View Article and Find Full Text PDFUnlabelled: Diabetic non-healing wounds are a major clinical problem. The mechanisms leading to poor wound healing in diabetes are multifactorial but unresolved inflammation may be a major contributing factor. The complement system (CS) is the most potent inflammatory cascade in humans and contributes to poor wound healing in animal models.
View Article and Find Full Text PDFInfection with Staphylococcus aureus does not induce long-lived protective immunity for reasons that are not completely understood. Human and murine vaccine studies support a role for Abs in protecting against recurring infections, but S. aureus modulates the B cell response through expression of staphylococcus protein A (SpA), a surface protein that drives polyclonal B cell expansion and induces cell death in the absence of costimulation.
View Article and Find Full Text PDFBackground: The agglutination-based cross-matching method is sensitive for antibody binding to red blood cells but is only partially predictive of complement-mediated hemolysis, which is important in many acute hemolytic transfusion reactions. Here, we describe complement hemolysis using human erythrocytes (CHUHE) assays that directly evaluate complement-mediated hemolysis between individual serum-plasma and red blood cell combinations. The CHUHE assay is used to evaluate correlations between agglutination titers and complement-mediated hemolysis as well as the hemolytic potential of plasma from type A blood donors.
View Article and Find Full Text PDFBackground: Acute hemolytic transfusion reactions have a broad clinical presentation from mild and transitory signs and symptoms to shock, disseminated intravascular coagulation, renal failure, and death. We have recently developed a rat model of acute intravascular hemolysis showing that the classical complement pathway mediates antibody-dependent hemolysis. The objective of this study was to evaluate the role of the classical pathway inhibitor peptide inhibitor of complement C1 (PIC1) in this animal model.
View Article and Find Full Text PDFJ Acquir Immune Defic Syndr
September 2016
Introduction: Uncontrolled HIV infection is known to activate the complement system, leading to an increase in chronic inflammation. Whether or not this activation of complement persists and contributes to chronic inflammation in subjects with HIV infection that is well controlled through use of antiretroviral therapy has not been studied.
Methods: We conducted an observational, cross-sectional study using sera from 305 adults with well-controlled HIV infection and 30 healthy controls.
Background: Eosinophilic esophagitis (EoE) is a chronic disease that requires long-term medical management and monitoring. The eosinophil count determined during esophageal biopsy remains the gold standard for diagnosis and monitoring of EoE. Although markers of eosinophil degranulation correlate with symptoms, eosinophil counts do not correlate.
View Article and Find Full Text PDF