The generation of spin polarization is key in quantum information science and dynamic nuclear polarization. Polarized electron spins with long spin-lattice relaxation times () at room temperature are important for these applications but have been difficult to achieve. We report the realization of spin-polarized radicals with extremely long at room temperature in a metal-organic framework (MOF) in which azaacene chromophores are densely integrated.
View Article and Find Full Text PDFDynamic nuclear polarization (DNP) significantly improves the sensitivity of magnetic resonance imaging, and its most important medical application is cancer diagnosis hyperpolarized C-labeled pyruvate. Unlike cryogenic DNP, triplet-DNP uses photoexcited triplet electrons under mild conditions. However, triplet-DNP of pyruvate has not been observed because of incompatibility of the hydrophobic polarizing agent with hydrophilic pyruvate.
View Article and Find Full Text PDFTriplet dynamic nuclear polarization (triplet-DNP) is a technique that can obtain high nuclear polarization under moderate conditions. However, in order to obtain practically useful polarization, large single crystals doped with a polarizing agent must be strictly oriented with respect to the magnetic field to sharpen the electron spin resonance (ESR) spectra, which is a fatal problem that prevents its application to truly useful biomolecular targets. Instead of this conventional physical approach of controlling crystal orientation, here, we propose a chemical approach, i.
View Article and Find Full Text PDFSinglet fission (SF), converting a singlet excited state into a spin-correlated triplet-pair state, is an effective way to generate a spin quintet state in organic materials. Although its application to photovoltaics as an exciton multiplier has been extensively studied, the use of its unique spin degree of freedom has been largely unexplored. Here, we demonstrate that the spin polarization of the quintet multiexcitons generated by SF improves the sensitivity of magnetic resonance of water molecules through dynamic nuclear polarization (DNP).
View Article and Find Full Text PDFDynamic electron polarization (DEP), induced by quenching of photoexcited species by stable radicals, can hyperpolarize electron spins in solution at room temperature. Recently, development of technologies based on electron spin polarization such as dynamic nuclear polarization (DNP) has been progressing, where it is important to design molecules that achieve long-lasting DEP in addition to high DEP. Hybridization by linking dyes and radicals is a promising approach for efficient DEP, but strong interactions between neighboring dyes and radicals often result in the rapid decay of DEP.
View Article and Find Full Text PDFDynamic nuclear polarization (DNP) using transient electron spin polarization generated by photoexcitation can improve nuclear magnetic resonance (NMR) sensitivity far beyond the thermal equilibrium limit for analysis in life science and drug discovery. However, DNP of liquid water at room temperature remains an important challenge. Here, we propose a new method called hyperpolarization relay, in which the nonequilibrium polarization of electron spins is transferred to proton spins in the nanocrystals and then to proton spins in bulk water.
View Article and Find Full Text PDFDynamic nuclear polarization utilizing photoexcited triplet electrons (triplet-DNP) has great potential for room-temperature hyperpolarization of nuclear spins. However, the polarization transfer to molecules of interest remains a challenge due to the fast spin relaxation and weak interaction with target molecules at room temperature in conventional host materials. Here, we demonstrate the first example of DNP of guest molecules in a porous material at around room temperature by utilizing the induced-fit-type structural transformation of a crystalline yet flexible metal-organic framework (MOF).
View Article and Find Full Text PDFThe spin-polarized triplet state generated by light irradiation has potential for applications such as triplet dynamic nuclear polarization (triplet-DNP). Recently, we have reported free-base porphyrins as versatile and biocompatible polarizing agents for triplet-DNP. However, the electron polarization of free-base porphyrins is not very high, and the dilemma is that the high polarization of metalloporphyrins is accompanied by a too short spin-lattice relaxation time to be used for triplet-DNP.
View Article and Find Full Text PDFTriplet dynamic nuclear polarization (triplet-DNP) achieves nuclear spin polarization at moderate temperatures by using spin polarization of photoexcited triplet electrons. The applications of triplet-DNP for biomolecules have been hampered because acenes, the only polarizing agents used so far, tend to aggregate and lose their polarization in biomolecular matrices. Here, we report for the first time use of porphyrins as polarizing agents of triplet-DNP and propose a new concept of aggregation-tolerant polarizing agents.
View Article and Find Full Text PDFDynamic nuclear polarization with photo-excited triplet electrons (triplet-DNP) has the potential to enhance the sensitivity of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) at a moderate temperature. While many efforts have been devoted to achieving a large nuclear polarization based on triplet-DNP, the application of triplet-DNP has been limited to nuclear physics experiments. The recent introduction of materials chemistry into the field of triplet-DNP has achieved air-stable and water-soluble polarizing agents as well as the hyperpolarization of nanomaterials with a large surface area such as nanoporous metal-organic frameworks (MOFs) and nanocrystal dispersion in water.
View Article and Find Full Text PDFTriplet dynamic nuclear polarization (triplet-DNP) allows hyperpolarization at a moderate temperature. While the triplet-DNP of water is strongly desired, water-soluble triplet polarizing agents have not yet been reported. Herein, the first example of triplet-DNP of crystalline ice is demonstrated by molecularly dispersing a novel water-soluble polarizing agent into ice.
View Article and Find Full Text PDFDynamic nuclear polarization with photo-excited triplet electrons (Triplet-DNP) is demonstrated using 6,13-diphenylpentacene (DPPentacene). DPPentacene is soluble in various organic solvents, while pentacene, which is used in most of the triplet-DNP experiments, has limited solubility. An enhancement factor of 81 is obtained for 1H spins in the glass of ethanol-d6 : water = 80 : 20 (w/w) doped with 0.
View Article and Find Full Text PDFWhile dynamic nuclear polarization using photo-excited triplet electrons (triplet-DNP) can improve the sensitivity of nuclear magnetic resonance at room temperature, it has not been carried out in water. Here, we report the first example of triplet-DNP in water by downsizing the conventional bulk crystals to nanocrystals.
View Article and Find Full Text PDFTriplet dynamic nuclear polarization (triplet-DNP), a method to enhance nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) sensitivity using photoexcited triplet electrons, has great potential to hyperpolarize nuclear spins at room temperature. Since the first report of room-temperature triplet-DNP in 1990, pentacene has been the only and best option of triplet polarizing agent. However, the poor air stability of pentacene has severely limited the applicability of triplet-DNP.
View Article and Find Full Text PDFWhile dynamic nuclear polarization based on photoexcited triplet electrons (triplet-DNP) has the potential to hyperpolarize nuclear spins of target substrates in the low magnetic field at room temperature, there has been no triplet-DNP system offering structural rigidity and substrate accessibility. Here, we report the first example of triplet-DNP of nanoporous metal-organic frameworks. Accommodation of a carboxylate-modified pentacene derivative in a partially deuterated ZIF-8 (D-ZIF-8) results in a clear H NMR signal enhancement over thermal equilibrium.
View Article and Find Full Text PDFDissolution dynamic nuclear polarization (DNP) has recently gained attention as a method to enhance the sensitivity of liquid NMR spectroscopy and MRI. We demonstrate dissolution of the sample hyperpolarized by DNP using photoexcited triplet electrons in 0.38 T at room temperature.
View Article and Find Full Text PDFDynamic nuclear polarization (DNP), a means of transferring spin polarization from electrons to nuclei, can enhance the nuclear spin polarization (hence the NMR sensitivity) in bulk materials at most 660 times for (1)H spins, using electron spins in thermal equilibrium as polarizing agents. By using electron spins in photo-excited triplet states instead, DNP can overcome the above limit. We demonstrate a (1)H spin polarization of 34%, which gives an enhancement factor of 250,000 in 0.
View Article and Find Full Text PDFWe propose a scalable and practical implementation of spin amplification which does not require individual addressing nor a specially tailored spin network. We have demonstrated a gain of 140 in a solid-state nuclear spin system of which the spin polarization has been increased to 0.12 using dynamic nuclear polarization with photoexcited triplet electron spins.
View Article and Find Full Text PDF