Objective: The juvenile visceral steatosis (JVS) mouse, a murine model of systemic carnitine deficiency, shows a disorder of fatty acid oxidation and develops cardiac hypertrophy associated with lipid accumulation. Recently, alpha-tocopherol was shown to decrease 1,2-diacylglycerol (DAG) levels. We investigated the involvement of DAG in cardiac hypertrophy due to energy metabolism disorder by evaluating the effects of alpha-tocopherol administration on the hearts of JVS mice.
View Article and Find Full Text PDFPeople with a predominance of small, dense low-density lipoprotein (LDL) particles appear to be at increased risk for coronary disease, independent of LDL cholesterol levels. The Trp64Arg variant of the beta3-adrenergic receptor gene is reported to be associated with abdominal obesity and resistance to insulin, and as a consequence, this variant may be a genetic factor in the development of atherosclerosis. Therefore, we investigated whether the beta3-adrenergic receptor polymorphism contributes to the distribution of LDL particle size in 136 Japanese subjects, aged 33 to 59 years, who visited for a routine annual checkup.
View Article and Find Full Text PDFObjective: The juvenile visceral steatosis (JVS) mouse, a genetic model of systemic carnitine deficiency resulting from carnitine transport mutation, develops cardiac hypertrophy. We determined two putative lipid messengers, 1,2-diacylglycerol (DAG) and ceramide, in JVS and carnitine palmitoyltransferase-I (CPT-I) inhibitor etomoxir-treated mice because these lipids function as co-messengers in the myocardium via modification of protein kinase C activity.
Methods: JVS mice were evaluated at 4 and 8 weeks of age.