Physiologically-based pharmacokinetic (PBPK) modeling offers a viable approach to predict induction drug-drug interactions (DDIs) with the potential to streamline or reduce clinical trial burden if predictions can be made with sufficient confidence. In the current work, the ability to predict the effect of rifampin, a well-characterized strong CYP3A4 inducer, on 20 CYP3A probes with publicly available PBPK models (often developed using a workflow with optimization following a strong inhibitor DDI study to gain confidence in fraction metabolized by CYP3A4, f, and fraction available after intestinal metabolism, Fg), was assessed. Substrates with a range of f (0.
View Article and Find Full Text PDFPhysiologically based pharmacokinetic (PBPK) models of entrectinib and its equipotent metabolite, M5, were established in healthy adult subjects and extrapolated to pediatric patients to predict increases in steady-state systemic exposure on co-administration of strong and moderate CYP3A4 inhibitors (itraconazole at 5 mg/kg, erythromycin at 7.5-12.5 mg/kg and fluconazole at 3-12 mg/kg, respectively).
View Article and Find Full Text PDFHepatic impairment, due to liver cirrhosis, decreases the activity of cytochrome P450 enzymes (CYPs). The use of physiologically based pharmacokinetic (PBPK) modeling to predict this effect for CYP substrates has been well-established, but the effect of cirrhosis on uridine-glucuronosyltransferase (UGT) activities is less studied and few PBPK models have been reported. UGT enzymes are involved in primary -glucuronidation of midazolam and glucuronidation of 1'-OH-midazolam following CYP3A hydroxylation.
View Article and Find Full Text PDFPhysiologically-based pharmacokinetic (PBPK) modeling has become the established method for predicting human pharmacokinetics (PK) and drug-drug interactions (DDI). The number of drugs cleared by non-CYP enzyme metabolism has increased steadily and to date, there is no consolidated overview of PBPK modeling for drugs cleared by non-CYP enzymes. This review aims to describe the state-of-the-art for PBPK modeling for drugs cleared via non-CYP enzymes, to identify successful strategies, to describe gaps and to provide suggestion to overcome them.
View Article and Find Full Text PDFTacrolimus is a crucial immunosuppressant for organ transplant patients, requiring therapeutic drug monitoring due to its variable exposure after oral intake. Physiologically based pharmacokinetic (PBPK) modelling has provided insights into tacrolimus disposition in adults but has limited application in paediatrics. This study investigated age dependency in tacrolimus exposure at the levels of absorption, metabolism, and distribution.
View Article and Find Full Text PDFBackground And Objective: The impact of liver cirrhosis on the activity of UDP-glucuronosyltransferases (UGTs) is currently not well characterized. We investigated the glucuronidation capacity and glucuronide accumulation in patients with liver cirrhosis.
Methods: We administered the Basel phenotyping cocktail (caffeine, efavirenz, flurbiprofen, omeprazole, metoprolol, midazolam) to patients with liver cirrhosis (n = 16 Child A, n = 15 Child B, n = 5 Child C) and n = 12 control subjects and obtained pharmacokinetic profiles of substrates and primary metabolites and their glucuronides.
Aims: RO7049389 (linvencorvir) is a developmental oral treatment for chronic hepatitis B virus infection. The aim of this work was to conduct mass balance (MB) and absolute bioavailability (BA) analyses in healthy volunteers, alongside in vitro evaluations of the metabolism of RO7049389 and a major circulating active metabolite M5 in human hepatocytes, and physiologically based pharmacokinetic (PBPK) modelling to refine the underlying drug disposition paradigm.
Methods: Participants in the clinical study (MB: Caucasian, male, n = 6; BA: Caucasian and Asian, male and female, n = 16, 8 in each ethnic groups) received oral [ C] or unlabelled RO7049389 (600/1000 mg) followed by 100 μg intravenous [ C]RO7049389.
Hepatocyte intrinsic clearance (CL) and methods of in vitro-in vivo extrapolation (IVIVE) are often used to predict plasma clearance (CL) in drug discovery. While the prediction success of this approach is dependent on the chemotype, specific molecular properties and drug design features that govern these outcomes are poorly understood. To address this challenge, we investigated the success of prospective mouse CL IVIVE across 2142 chemically diverse compounds.
View Article and Find Full Text PDFFailure to perform adequate dose adjustment in patients with liver cirrhosis may be associated with increased toxicity. We compared the prediction of area under the curve (AUC) and clearance for the six compounds of the Basel phenotyping cocktail (caffeine, efavirenz, flurbiprofen, omeprazole, metoprolol, and midazolam) using a well-known physiology-based pharmacokinetic approach (physiologically-based pharmacokinetic [PBPK] approach, Simcyp) and a novel top-down method based on the systemic clearance in healthy volunteers adjusted for markers of liver and renal dysfunction ("top-down approach"). With few exceptions, plasma concentration-time curves were accurately predicted by the PBPK approach.
View Article and Find Full Text PDFDrug-drug interaction (DDI) assessments are well defined in health authority guidelines for small molecule drugs, and US Food and Drug Administration (FDA) draft guidance is now available for therapeutic proteins. However, there are currently no regulatory guidelines outlining DDI assessments for therapeutic peptides, which poses significant uncertainty and challenges during drug development for this heterogenous class of molecules. A cross-industry peptide DDI working group consisting of experts from 10 leading companies was formed under the sponsorship of the European Federation of Pharmaceutical Industries and Associations.
View Article and Find Full Text PDFTypically, therapeutic proteins (TPs) have a low risk for eliciting meaningful drug interactions (DIs). However, there are select instances where TP drug interactions (TP-DIs) of clinical concern can occur. This white paper discusses the various types of TP-DIs involving mechanisms such as changes in disease state, target-mediated drug disposition, neonatal Fc receptor (FcRn), or antidrug antibodies formation.
View Article and Find Full Text PDFReliable in vitro to in vivo translation of cytochrome P450 (CYP) 3A4 induction potential is essential to support risk mitigation for compounds during pharmaceutical discovery and development. In this study, a linear correlation of CYP3A4 mRNA induction potential in human hepatocytes with the respective pregnane-X receptor (PXR) activation in a reporter gene assay using DPX2 cells was successfully demonstrated for 13 clinically used drugs. Based on this correlation, using rifampicin as a positive control, the magnitude of CYP3A4 mRNA induction for 71 internal compounds at several concentrations up to 10 M ( = 90) was predicted within 2-fold error for 64% of cases with only a few false positives (19%).
View Article and Find Full Text PDFThe in vivo half-life is a key property of every drug molecule, as it determines dosing regimens, peak-to-trough ratios and often dose. However, half-life optimization can be challenging due to its multifactorial nature, with in vitro metabolic turnover, plasma protein binding and volume of distribution all impacting half-life. We here propose that the medicinal chemistry design parameter Lipophilic Metabolism Efficiency (LipMetE) can greatly simplify half-life optimization of neutral and basic compounds.
View Article and Find Full Text PDFRO7119929 is being developed as an orally administered prodrug of the TLR7-specific agonist and active drug, RO7117418, for the treatment of patients with solid tumours.In this publication, we present a case study wherein the human pharmacokinetics and pharmacological active dose were prospectively predicted following oral administration of the prodrug.A simple translational pharmacokinetic-pharmacodynamic strategy was applied to predict the pharmacological active dose of the prodrug in human.
View Article and Find Full Text PDFJ Pharmacokinet Pharmacodyn
October 2024
Quantitative Systems Pharmacology (QSP) modeling is increasingly applied in the pharmaceutical industry to influence decision making across a wide range of stages from early discovery to clinical development to post-marketing activities. Development of standards for how these models are constructed, assessed, and communicated is of active interest to the modeling community and regulators but is complicated by the wide variability in the structures and intended uses of the underlying models and the diverse expertise of QSP modelers. With this in mind, the IQ Consortium conducted a survey across the pharmaceutical/biotech industry to understand current practices for QSP modeling.
View Article and Find Full Text PDFEstimation of the fraction of a drug metabolized by individual hepatic CYP enzymes relative to hepatic metabolism (fm,CYP) or total clearance h as been challenging for low turnover compounds due to insufficient resolution of the intrinsic clearance (CLint) measurement in vitro and difficulties in quantifying the formation of low abundance metabolites. To overcome this gap, inhibition of drug depletion or selective metabolite formation for 7 marker CYP substrates was investigated using chemical inhibitors and a micro-patterned hepatocyte coculture system (HepatoPac). The use of 3 M itraconazole was successfully validated for estimation of fm,CYP3A4 by demonstration of fm values within a 2-fold of in vivo estimates for 10 out of 13 CYP3A4 substrates in a reference set of marketed drugs.
View Article and Find Full Text PDFIdasanutlin is a potent inhibitor of the p53-MDM2 interaction that enables reactivation of the p53 pathway, which induces cell cycle arrest and/or apoptosis in tumor cells expressing functional p53. It was investigated for the treatment of solid tumors and several hematologic indications such as relapsed/refractory acute myeloid leukemia, polycythemia vera, or non-Hodgkin lymphoma. For safety reasons, it cannot be given in healthy volunteers for drug-drug interaction (DDI) explorations.
View Article and Find Full Text PDFSmall molecules that present complex absorption, distribution, metabolism, and elimination (ADME) properties can be challenging to investigate as potential therapeutics. Acquiring data through standard methods can yield results that are insufficient to describe the in vivo situation, which can affect downstream development decisions. Implementing in vitro-in vivo-in silico strategies throughout the drug development process is effective in identifying and mitigating risks while speeding up their development.
View Article and Find Full Text PDFInvest New Drugs
February 2022
Background Entrectinib is a CNS-active, potent inhibitor of tyrosine receptor kinases A/B/C, ROS1 and anaplastic lymphoma kinase approved for use in patients with solid tumors. We describe the in vitro and clinical studies investigating potential entrectinib drug-drug interactions. Methods In vitro studies with human biomaterials assessed the enzymes involved in entrectinib metabolism, and whether entrectinib modulates the activity of the major cytochrome P450 (CYP) enzymes or drug transporter P-glycoprotein.
View Article and Find Full Text PDFDuring production, the figure captions for Fig. 1 and Fig. 2 were inadvertently switched in the proofing stage.
View Article and Find Full Text PDFThe use of micro-patterned co-cultured hepatocytes for human hepatic clearance predictions has previously been demonstrated using drugs metabolized by cytochrome P450 enzymes. The present study evaluates the in vitro to in vivo extrapolation (IVIVE) performance for UDP-glucuronosyltransferase (UGT) substrates. In vitro intrinsic clearances for 13 drugs mainly cleared by UGTs were determined using HepatoPac and suspended hepatocytes.
View Article and Find Full Text PDFPhysiologically based pharmacokinetic (PBPK) modeling is less well established for substrates of UDP-glucuronosyltransferases (UGT) than for cytochrome P450 (CYP) metabolized drugs and more verification of simulations is necessary to increase confidence. To address specific challenges of UGT substrates, we developed PBPK models for four drugs cleared majorly via glucuronidation (lorazepam, oxazepam, naloxone, and zidovudine). In vitro to in vivo scaling of intrinsic clearance generated with co-cultured human hepatocytes was applied for hepatic metabolism and extra-hepatic clearance was extrapolated based on relative expression of UGT isoforms in the liver, kidney, and intestine.
View Article and Find Full Text PDFThis drug-drug interaction study determined the effect of cyclosporine, an inhibitor of organic anion transporting polypeptide (OATP) 1B3 and P-gp, on the pharmacokinetics (PK) of fevipiprant, an oral, highly selective, competitive antagonist of the prostaglandin D receptor 2 and a substrate of the two transporters. The concomitant administration of an intravenous microdose of stable isotope-labeled fevipiprant provided the absolute bioavailability of fevipiprant as well as mechanistic insights into its PK and sensitivity to drug interactions. Liquid chromatography-mass spectrometry/mass spectrometry was used to measure plasma and urine concentrations.
View Article and Find Full Text PDFIn vitro to in vivo extrapolation (IVIVE) to predict human hepatic clearance, including metabolism and transport, requires extensive experimental resources. In addition, there may be technical challenges to measure low clearance values. Therefore, prospective identification of rate-determining step(s) in hepatic clearance through application of the Extended Clearance Classification System (ECCS) could be beneficial for optimal compound characterization.
View Article and Find Full Text PDF