Neurosci Res
February 2023
Astrocytes are morphologically complex, with a myriad of processes which allow contact with other astrocytes, blood vessels, and neurons. Adhesion molecules expressed by these cells regulate this connectivity. Adhesion molecules are required to form and maintain functional neural circuits, but their importance and mechanisms of action, particularly in astrocyte-neuron contact, remain unresolved.
View Article and Find Full Text PDFBesides neurons, the other half of central nerve system (CNS) cells are glia. Astrocytes, the most abundant glia, were first found together with neurons around 150 years ago, and have long been considered as merely supportive cells. Recent studies suggest that, far from being a "glue", they are specialized contributors to brain physiology and disease.
View Article and Find Full Text PDFFor normal neurogenesis and circuit formation, delamination of differentiating neurons from the proliferative zone must be precisely controlled; however, the regulatory mechanisms underlying cell attachment are poorly understood. Here, we show that Down syndrome cell adhesion molecule (DSCAM) controls neuronal delamination by local suppression of the RapGEF2-Rap1-N-cadherin cascade at the apical endfeet in the dorsal midbrain. transcripts were expressed in differentiating neurons, and DSCAM protein accumulated at the distal part of the apical endfeet.
View Article and Find Full Text PDFThe layer structure has been intensively characterized in the developing neocortex and cerebellum based on the various molecular markers. However, as to the developing dorsal midbrain, comprehensive analyses have not been intensely carried out, and thus, the name as well as the definition of each layer is not commonly shared. Here, we redefined the three layers, such as the ventricular zone, intermediate zone and marginal zone, based on various markers for proliferation and differentiation in embryonic dorsal midbrain.
View Article and Find Full Text PDFDevelopment of oligodendrocytes, myelin-forming glia in the central nervous system (CNS), proceeds on a protracted schedule. Specification of oligodendrocyte progenitor cells (OPCs) begins early in development, whereas their terminal differentiation occurs at late embryonic and postnatal periods. However, for oligodendrocytes in the cerebellum, the developmental origins and the molecular machinery to control these distinct steps remain unclear.
View Article and Find Full Text PDF